How to Find a Gymnast's Speed at the Bottom of a Swing?

  • Thread starter Thread starter djherse
  • Start date Start date
AI Thread Summary
To find a gymnast's speed at the bottom of a swing using conservation of mechanical energy, the initial potential energy at the top equals the kinetic energy at the bottom. The gymnast's height of 1.0 m translates into potential energy, which converts entirely into kinetic energy at the lowest point. Mass cancels out in the energy equations, allowing the calculation to focus on height and gravitational acceleration. The discussion highlights confusion about setting up the equations and frustration with a lecture-free teaching method. Understanding the relationship between height and speed is crucial for solving the problem effectively.
djherse
Messages
10
Reaction score
0
Another Fine Gymnist problem ...

A gymnist is swinging on a high bar. The distance between his waist and the bar is 1.0 m, as the drawing shows.


At the top of the swing his speed is momentarily zero. ignoring friction and treating the gymnist as if all his mass is located at his waist, find his speed at the bottom of the swing.

I know it must have something to do with The conservation of mechanical energy however I am not sure how to set up both sides of the equation ? my algebra is a little ruff... I an lost here i know some stuff must cancell out but what ? it all can't cancell out Mass must cancell because it is not given to you but what else?
 
Physics news on Phys.org
bump...

On a side note my class is part of a physicis without lectures trial at me school we are the second class to be subjected to this new teaching style and it is horiable. We have Zero lectures and are told to determine equations on our own... the teacher will only answer questions we have. Our entire 3 hour class is spent working in a poorly written workbook...
 
djherse said:
A gymnist is swinging on a high bar. The distance between his waist and the bar is 1.0 m, as the drawing shows.


At the top of the swing his speed is momentarily zero. ignoring friction and treating the gymnist as if all his mass is located at his waist, find his speed at the bottom of the swing.

I know it must have something to do with The conservation of mechanical energy however I am not sure how to set up both sides of the equation ? my algebra is a little ruff... I an lost here i know some stuff must cancell out but what ? it all can't cancell out Mass must cancell because it is not given to you but what else?
What does the drawing show as his start point at the top of the swing, relative to the bottom of the swing? His speed at the bottom depends on how high up he starts.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top