B How to find the infinitesimal coordinate transform along a hyperbola?

AI Thread Summary
The infinitesimal coordinate transformations along a hyperbola defined by the equation b(dy)^2 - a(dx)^2 = r are expressed as δx = bwy and δy = awx, where w is related to the angle of rotation. The function w is speculated to be similar to sinh(theta), although this remains unconfirmed. The discussion seeks clarification on the derivation of these transformations and their role in preserving the invariant r. The context of this inquiry is linked to previous insights on the relationship between Lie groups and physics. Understanding these transformations is crucial for grasping the geometric properties of hyperbolas in relation to rotation.
Sciencemaster
Messages
129
Reaction score
20
TL;DR Summary
I've been told that the infinitesimal change in coordinates x and y takes the form δx=wy and δy=wx, and I was hoping someone could help me figure out why.
I've been told that the infinitesimal change in coordinates x and y as you rotate along a hyperbola that fits the equation b(dy)^2-a(dx)^2=r takes the form δx=bwy and δy=awx, where w is a function of the angle of rotation (I'm pretty sure it's something like sinh(theta) but it wasn't clarified for me so I'm not 100% sure). However, I'm not sure why this is the case, and I was hoping someone could show me how you get these infantesimal transformations and how they preserve the invariant r.
 
Mathematics news on Phys.org
The last time I saw this point of view was when I wrote my insight article When Lie Groups Became Physics based on a book from 1911! I have tried to use rotation as an example (the equations in brackets [...]) so maybe it helps.
 
  • Wow
Likes Sciencemaster and e_jane
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top