MHB How to Find the Perpendicular Distance from a Point to a Line?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Perpendicular
AI Thread Summary
To find the perpendicular distance from point P(1, 3) to the line y = (x/2) - 5, start by determining the equation of the line perpendicular to it, which has a slope of -2. Using the point-slope form, the equation of the perpendicular line is y = -2x + 5. To find the intersection of the two lines, set the equations equal: -2x + 5 = (x/2) - 5, and solve for x. Substitute the x-coordinate back into either line's equation to find the corresponding y-coordinate. This process will yield the intersection point needed to calculate the perpendicular distance.
mathdad
Messages
1,280
Reaction score
0
Use the distance formula to find the perpendicular distance from P(1, 3) to the line y = (x/2) - 5.

Any ideas on how to get started?
 
Mathematics news on Phys.org
RTCNTC said:
Use the distance formula to find the perpendicular distance from P(1, 3) to the line y = (x/2) - 5.

Any ideas on how to get started?
Try starting with this.

-Dan
 
RTCNTC said:
Use the distance formula to find the perpendicular distance from P(1, 3) to the line y = (x/2) - 5.

Any ideas on how to get started?

Perpendicular lines have gradients that multiply to give -1, so the gradient of the line you are looking for is -2. You know that (1, 3) lies on this line, so

$\displaystyle \begin{align*} y - 3 &= -2 \left( x - 1 \right) \\ y - 3 &= -2\,x + 2\\ y &= -2\,x + 5 \end{align*}$

And now you want to know where $\displaystyle \begin{align*} y = -2\,x + 5 \end{align*}$ and $\displaystyle \begin{align*} y = \frac{x}{2} - 5 \end{align*}$ intersect, so that you can work out the distance between this point and P(1, 3).
 
Prove It said:
Perpendicular lines have gradients that multiply to give -1, so the gradient of the line you are looking for is -2. You know that (1, 3) lies on this line, so

$\displaystyle \begin{align*} y - 3 &= -2 \left( x - 1 \right) \\ y - 3 &= -2\,x + 2\\ y &= -2\,x + 5 \end{align*}$

And now you want to know where $\displaystyle \begin{align*} y = -2\,x + 5 \end{align*}$ and $\displaystyle \begin{align*} y = \frac{x}{2} - 5 \end{align*}$ intersect, so that you can work out the distance between this point and P(1, 3).

To find where the two lines meet, do I set the equations equal to each other?
 
RTCNTC said:
To find where the two lines meet, do I set the equations equal to each other?

Yes, set:

$$-2x+5=\frac{x}{2}-5$$

and solve for $x$ to get the $x$-coordinate of the intersection point. Then plug this value for $x$ into either line (doesn't matter which as they will give the same $y$ value) to get the $y$-coordinate. :D
 
MarkFL said:
Yes, set:

$$-2x+5=\frac{x}{2}-5$$

and solve for $x$ to get the $x$-coordinate of the intersection point. Then plug this value for $x$ into either line (doesn't matter which as they will give the same $y$ value) to get the $y$-coordinate. :D

I can do it. Thanks.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top