How To Integrate 1/[sqrt (x^2 + 3x + 2)] dx?

In summary, you integrate ##\frac{1}{\sqrt{x^2 + 3x + 2}} dx## by using trigonometric substitution and then factoring to get a difference of squares.
  • #36
and even what @PeroK presented in post 12 takes a little algebra to compute, starting with ## x=\cosh{u}=\frac{e^u+e^{-u}}{2} ##.
 
Last edited:
Physics news on Phys.org
  • #37
I only know the very basic properties of hyperbolic function such as:

##\sinh x = \frac{e^x - e^{-x}}{2}##

and

##\cosh x = \frac{e^x + e^{-x}}{2}##

But I don't know how to use it in technique of integration.
 
  • #38
askor said:
I only know the very basic properties of hyperbolic function such as:

##\sinh x = \frac{e^x - e^{-x}}{2}##

and

##\cosh x = \frac{e^x + e^{-x}}{2}##

But I don't know how to use it in technique of integration.
Using the above definitions what are the derivatives of ##\sinh x## and ##\cosh x##?

What is ##\cosh^2 x## in terms of ##\sinh^2 x##?

In terms of integration, you use them the same way you use the trig functions, by substitution. E.g.:
$$x = \cosh u, \ \ dx = \frac{d}{du} (\cosh u) du$$
 
  • Like
Likes Charles Link
  • #39
askor said:
I only know the very basic properties of hyperbolic function such as:

##\sinh x = \frac{e^x - e^{-x}}{2}##

and

##\cosh x = \frac{e^x + e^{-x}}{2}##

But I don't know how to use it in technique of integration.
I think finding ##dx## helps so you need to find the derivative of ##\cosh x##. I learned it from a table of derivatives and integrals, which contained also ##\cosh x##.
 
  • Like
Likes Charles Link
  • #40
askor said:
How do you integrate ##\frac{1}{\sqrt{x^2 + 3x + 2}} dx##?

I had tried using ##u = x^2 + 3x + 2## and trigonometry substitution but failed.

Please give me some clues and hints.

Thank you

mentor note: moved from a non-homework to here hence no template.
Wolfram Alpha
 
  • #41
askor said:
##\int \frac{du}{1 - u^2}##
The hyperbolic trig approach is neater, but to proceed with the above form use partial fractions.
 
  • Like
Likes Charles Link
  • #42
haruspex said:
The hyperbolic trig approach is neater, but to proceed with the above form use partial fractions.
With you have there, why couldn’t a second substitution be made, using ##1 - sin^2w = cos^2w##?

I’m sure I’m missing something.
 
  • #43
Grasshopper said:
With you have there, why couldn’t a second substitution be made, using ##1 - sin^2w = cos^2w##?

I’m sure I’m missing something.
That would be going back to what we had earlier, integrating sec.
Do you see how to solve it using partial fractions?
 
  • #44
haruspex said:
That would be going back to what we had earlier, integrating sec.
Do you see how to solve it using partial fractions?
Wait, lol sorry I see now. It was late I was not thinking clearly. But yeah this is one of the easier partial fractions.
 
  • #45
Grasshopper said:
Wait, lol sorry I see now. It was late I was not thinking clearly. But yeah this is one of the easier partial fractions.
what is the final solution? did you really get it?
 

Similar threads

Replies
10
Views
1K
Replies
54
Views
9K
Replies
5
Views
2K
Replies
11
Views
1K
Replies
22
Views
2K
Replies
2
Views
866
Back
Top