MHB How to Prove the Lagrange Interpolation Formula?

HMPARTICLE
Messages
95
Reaction score
0
$\text{Let } L_{n,i}, i = 0,...,n, \text{be the Lagrange nodal basis at} x_0 < x_1<...<x_n$. Show that, for any polynomial $q \in P_n$

$$\sum_{i=0}^nq(x_i)L_{n,i}(x)= q(x)$$

I don't know how to begin this proof. I know what a lagrange polynomial is, but I am not sure how to begin. If someone could give me a point to start please.
 
Physics news on Phys.org
Are you need to prove interpolation formula of Lagrange?
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top