How to solve the integral of 1+tanx using partial fraction decomposition?

  • MHB
  • Thread starter Lorena_Santoro
  • Start date
  • Tags
    Approach
In summary, we substitute $u=\tan x$, which means $x=\arctan u$ and $dx=\frac{1}{1+u^2}\,du$. We then use partial fraction decomposition to simplify the integral. Finally, we get the answer of $\frac 12\ln(1+\tan x)-\frac 14\ln(1+\tan^2 x) +\frac 12 x + C$.
  • #1
Lorena_Santoro
22
0
\( \int\frac{dx}{1+tanx} \)
 
Physics news on Phys.org
  • #2
Substitute $u=\tan x$, which means $x=\arctan u$ and $dx=\frac{1}{1+u^2}\,du$.
Follow up with partial fraction decomposition.
$$\begin{align}\int\frac{dx}{1+\tan x}&=\int \frac{1}{1+u}\cdot\frac{1}{1+u^2}\,du
=\int\Big(\frac{\frac 12}{1+u}+\frac{-\frac 12 u +\frac 12}{1+u^2}\Big)\,du
=\frac 12\ln(1+u)-\frac 14\ln(1+u^2)+\frac 12\arctan u + C \\
&=\frac 12\ln(1+\tan x)-\frac 14\ln(1+\tan^2 x) +\frac 12 x + C\end{align}$$
 
  • #3
Klaas van Aarsen said:
Substitute $u=\tan x$, which means $x=\arctan u$ and $dx=\frac{1}{1+u^2}\,du$.
Follow up with partial fraction decomposition.
$$\begin{align}\int\frac{dx}{1+\tan x}&=\int \frac{1}{1+u}\cdot\frac{1}{1+u^2}\,du
=\int\Big(\frac{\frac 12}{1+u}+\frac{-\frac 12 u +\frac 12}{1+u^2}\Big)\,du
=\frac 12\ln(1+u)-\frac 14\ln(1+u^2)+\frac 12\arctan u + C \\
&=\frac 12\ln(1+\tan x)-\frac 14\ln(1+\tan^2 x) +\frac 12 x + C\end{align}$$
Thank you very much!
 

Similar threads

Replies
6
Views
2K
Replies
22
Views
2K
Replies
3
Views
1K
Replies
5
Views
2K
Replies
8
Views
1K
Replies
8
Views
2K
Replies
8
Views
2K
Replies
6
Views
814
Back
Top