B How to understand formula for bending of a rectangular rod?

AI Thread Summary
The discussion centers on calculating Young's modulus for a rod experiencing bending under forces. It emphasizes that deflection is linear with force, allowing for the use of superposition when deflections are small. The main inquiry is whether to use just the additional force and the change in deflection or to account for both forces and the total deflection. Clarification is sought on whether the forces are applied at the same location, which could impact the calculations. Understanding the relationship between the forces and deflection is crucial for accurate modulus determination.
Lotto
Messages
251
Reaction score
16
TL;DR Summary
If we have a rod shown on the picture below, we can calculate Young's modulus as ##E =\frac{F l^3}{4yab^3}##, where ##a## is a width and ##b## is a height of the rod.

Now my question is: If the rod is already bended with a certain ##y## as on the picture and if we apply an another additional force ##F'## and the total bend would be ##y'##, can we use in the formula to calculate ##E## only ##F'## and ##y'-y##? Or do we have to use ##F+F'## and ##y'##?
The picture:
picture.png
 
Physics news on Phys.org
Notice that the deflection is linear with force.
Each force causes a proportional deflection.
So long as the deflection is small, the order of application is not critical.
 
Lotto said:
TL;DR Summary: If we have a rod shown on the picture below, we can calculate Young's modulus as ##E =\frac{F l^3}{4yab^3}##, where ##a## is a width and ##b## is a height of the rod.

Now my question is: If the rod is already bended with a certain ##y## as on the picture and if we apply an another additional force ##F'## and the total bend would be ##y'##, can we use in the formula to calculate ##E## only ##F'## and ##y'-y##? Or do we have to use ##F+F'## and ##y'##?

The picture:
View attachment 358226
You can use superposition if the deflections are not too large.
 
You can reson this one out. Suppose that there is not load, i.e. both ##F## and ##F'## are zero. What does the rod look like? Now add ##F## and ##F'##. How would you calculate the height? You may or may not have to ignore the bending of the rod under its weight.
 
Lotto said:
Now my question is: If the rod is already bended with a certain ##y## as on the picture and if we apply an another additional force ##F'## and the total bend would be ##y'##, can we use in the formula to calculate ##E## only ##F'## and ##y'-y##? Or do we have to use ##F+F'## and ##y'##?
Quick question- are F and F' applied at the same location?
 
Thread ''splain this hydrostatic paradox in tiny words'
This is (ostensibly) not a trick shot or video*. The scale was balanced before any blue water was added. 550mL of blue water was added to the left side. only 60mL of water needed to be added to the right side to re-balance the scale. Apparently, the scale will balance when the height of the two columns is equal. The left side of the scale only feels the weight of the column above the lower "tail" of the funnel (i.e. 60mL). So where does the weight of the remaining (550-60=) 490mL go...
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Back
Top