MHB How to Write a Quadratic Equation Given Its Roots?

  • Thread starter Thread starter abbarajum
  • Start date Start date
  • Tags Tags
    Roots
AI Thread Summary
To write a quadratic equation given its roots, the roots provided were (-1 + sqrt(-2))/5 and its conjugate. The initial equation derived was f(x) = 5(x^2) + 2x + (3/5), but the constant term (3/5) raises questions about integer coefficients. It's clarified that the constant term is indeed a coefficient, and the equation can be adjusted by multiplying through by 5 to achieve integer coefficients. A correct approach involves ensuring that the entire equation is scaled appropriately to maintain the integrity of the roots.
abbarajum
Messages
5
Reaction score
0
Hi everyone.

I was given a problem in which the roots of a quadratic function were given. Using those roots, I had to write the quadratic function, with integer coeffecients only.

The roots were: (-1+ (sqrt -2))/5 and its conjugate.

The equation I have so far is: f(x) = 5(x^2) + 2x + (3/5)

I used the sum and the product of roots to get this. My question is this. Is the constant term (3/5) considered a coeffecient? I ask this because I am not sure how to get all of these numbers to be integers. If it is considered a coeffecient, then should I use completing the square to rewrite the equation?
 
Mathematics news on Phys.org
abbarajum said:
Hi everyone.

I was given a problem in which the roots of a quadratic function were given. Using those roots, I had to write the quadratic function, with integer coeffecients only.

The roots were: (-1+ (sqrt -2))/5 and its conjugate.

The equation I have so far is: f(x) = 5(x^2) + 2x + (3/5)

I used the sum and the product of roots to get this. My question is this. Is the constant term (3/5) considered a coeffecient? I ask this because I am not sure how to get all of these numbers to be integers. If it is considered a coeffecient, then should I use completing the square to rewrite the equation?

How did you get that equation? When I worked it out I got [math]x^2 - \dfrac{2}{5}x + \dfrac{3}{25}[/math].

What you've done means the 5 is only distributed to the $$x^2$$ instead the whole equation - a good way to check your work is to work out if the solution to the equation is what you started with

The constant term can be considered a coefficient (of [math]x^0[/math]). Can you not multiply through by 5 again to give you: $$f(x) = \dfrac{1}{25}(25x^2-10x+3)$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top