A Hypersurface Definition Confusion in General Relativity

tm33333
Messages
4
Reaction score
2
In my notes on general relativity, hypersurfaces are defined as in the image. What confuses me is that if f=constant, surely the partial differential is going to be zero? I'm not sure if I'm missing something, but surely the function can't be equal to a constant and its partial differential be non-zero?

thanks.
 

Attachments

  • Screenshot 2021-05-11 at 21.05.25.png
    Screenshot 2021-05-11 at 21.05.25.png
    11.2 KB · Views: 140
Physics news on Phys.org
It's requiring that ##\partial_af## be non-zero everywhere, then saying the subset of points with the same value of ##f## define a hypersurface. Analogously, you can define a function ##f(x,y)## on a two dimensional Euclidean plane and the lines of constant ##f## are the contour lines (1d analogues to 3d hypersurfaces). The gradient on a contour isn't zero, it is perpendicular to the contour line.

(Note that geographical contour lines can close, but a closed contour line encloses at least one point where the gradient is zero, so the definition of a hypersurface excludes this possibility).
 
Well, the requirement that ##\partial_a f=0## everywhere is a bit strict. It is sufficient that it is non-zero at the hypersurface being described by the particular constant. (Although you will need the full requirement if you intend to make a foliation of the manifold.)

As an example, consider the sphere in standard Euclidean space with ##f = x^2 + y^2 + z^2##. For ##R>0##, ##f = R^2## defines a sphere of radius ##R##, which is a level surface of ##f## in ##\mathbb R^3##.
 
  • Like
Likes tm33333 and Ibix
Thank you both. That definitely clarifies things!
 
Moderator's note: Thread title edited to be more descriptive of the specific question.
 
tm33333 said:
Thank you both. That definitely clarifies things!
I guess you can say that they broke it down for you. :wink:
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top