- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{i.7 verify that the given function is a solution} $
\begin{align*}\displaystyle
u_{xx}+u_{yy}+u_{zz}&=0\\
u=\phi(x,y,z)&=(x^2 + y^2 +z^2)^{-1/2}\\
(x,y,z)&\ne(0,0,0)
\end{align*}
ok there is no book answer
$\tiny{Elementary \, Differential \, Equations \, Boundary \, Value \, Problems \quad Boyce/Diprinaia \quad 1965}$
\begin{align*}\displaystyle
u_{xx}+u_{yy}+u_{zz}&=0\\
u=\phi(x,y,z)&=(x^2 + y^2 +z^2)^{-1/2}\\
(x,y,z)&\ne(0,0,0)
\end{align*}
ok there is no book answer
$\tiny{Elementary \, Differential \, Equations \, Boundary \, Value \, Problems \quad Boyce/Diprinaia \quad 1965}$
Last edited: