- #1
Math100
- 797
- 221
- Homework Statement
- If ## n>1 ##, show that ## n! ## is never a perfect square.
- Relevant Equations
- None.
Proof:
Let ## n>1 ## be an integer.
By definition of factorial, ## n!=n\times (n-1)\times \dotsb \times 1 ##.
Now we consider two cases.
Case #1: Suppose ## n ## is odd.
Then ## n=2k+1 ## for ## k\geq 1 ##.
Note that ## n!=(2k+1)!=(2k+1)\times (2k+1-1)\times \dotsb \times 1\implies (2k+1)\times (2k)\times \dotsb \times 1 ##.
Thus, ## n! ## is not a perfect square.
Case #2: Suppose ## n ## is even.
Then ## n=2k ## for ## k\geq 1 ##.
Note that ## n!=2k\times (2k-1)\times \dotsb \times 1 ##.
Thus, ## n! ## is not a perfect square.
Therefore, ## n! ## is never a perfect square.
Let ## n>1 ## be an integer.
By definition of factorial, ## n!=n\times (n-1)\times \dotsb \times 1 ##.
Now we consider two cases.
Case #1: Suppose ## n ## is odd.
Then ## n=2k+1 ## for ## k\geq 1 ##.
Note that ## n!=(2k+1)!=(2k+1)\times (2k+1-1)\times \dotsb \times 1\implies (2k+1)\times (2k)\times \dotsb \times 1 ##.
Thus, ## n! ## is not a perfect square.
Case #2: Suppose ## n ## is even.
Then ## n=2k ## for ## k\geq 1 ##.
Note that ## n!=2k\times (2k-1)\times \dotsb \times 1 ##.
Thus, ## n! ## is not a perfect square.
Therefore, ## n! ## is never a perfect square.