Increasing car efficiency by rerouting airflow?

AI Thread Summary
The discussion explores the concept of improving car efficiency by rerouting airflow to reduce air drag. It suggests using a supercharger to compress and redirect the air hitting the front of the car, potentially minimizing the car's profile against the wind. However, concerns arise regarding the energy costs of compression and the possibility of negative energy balance due to increased drag from the system itself. The conversation also touches on the aerodynamic design of modern cars and draws parallels to biological examples, such as dolphin skin, which enhances hydrodynamic efficiency. Ultimately, while the idea is intriguing, practical implementation may be unfeasible and costly.
rumborak
Messages
706
Reaction score
154
This is only a semi- serious thread, since I suspect there's a simple back-of-a-napkin calculation that shows this to be infeasible.

The idea is the following: a lot of a car's efficiency gets lost in the form of air drag, I.e. forcing the air to go around the car.
Could one upscale a supercharger, I.e. a compressor, to consume all the incident airflow hitting the front of the car, compress it, route it through the car, and in the back expel it again?
Intuitively this should reduce air drag, since a much smaller section of the car is now "visible" to the air.
However, the compression and the associated own air drag might thwart the energy balance, making it negative overall. But, is that necessarily so?
 
Physics news on Phys.org
rumborak said:
This is only a semi- serious thread, since I suspect there's a simple back-of-a-napkin calculation that shows this to be infeasible.

The idea is the following: a lot of a car's efficiency gets lost in the form of air drag, I.e. forcing the air to go around the car.
Could one upscale a supercharger, I.e. a compressor, to consume all the incident airflow hitting the front of the car, compress it, route it through the car, and in the back expel it again?
Intuitively this should reduce air drag, since a much smaller section of the car is now "visible" to the air.
However, the compression and the associated own air drag might thwart the energy balance, making it negative overall. But, is that necessarily so?
For your back-of-the-napkin calculation, figure out how many horsepower it would require to do that air pumping, and compare that to the power wasted in the excess air resistance... :smile:

EDIT -- Wait, you can write on both sides of a napkin, but only on one side of a used envelope... o0)
 
  • Like
Likes sophiecentaur
berkeman said:
how many horsepower it would require to do that air pumping,
Yes - the pump would have to be free of turbulence.
 
  • Like
Likes berkeman
Sounds like you're essentially talking about a jet engine designed to generate just enough thrust to cancel out it's own drag, rendering the latter effectively zero.
 
mrspeedybob said:
Sounds like you're essentially talking about a jet engine designed to generate just enough thrust to cancel out it's own drag, rendering the latter effectively zero.
. . . . . which would cost a fortune to buy and to run, of course.
The aerodynamic design of modern fast cars does exactly what the title of the thread suggests.
On a parallel topic, I have read that the skins of dolphins has small ridges and valleys all over it and is 'deliberately' flexible, which is thought to improve its hydrodynamic efficiency. I wasn't aware of an equivalent in air (but who knows what birds' feathers do for efficiency?) but http://msbusiness.com/2007/12/entrepreneur-mimics-dolphin-skin-for-fuel-efficiency-enhancement/ which mentions the subject. There are dozens of other links about dolphin swimming efficiency being higher than you'd expect.
 
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
I know that mass does not affect the acceleration in a simple pendulum undergoing SHM, but how does the mass on the spring that makes up the elastic pendulum affect its acceleration? Certainly, there must be a change due to the displacement from equilibrium caused by each differing mass? I am talking about finding the acceleration at a specific time on each trial with different masses and comparing them. How would they compare and why?
Back
Top