- #1
sur
- 3
- 1
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: School project about induced drag - I do not have a wind tunnel - and a comparison between rectengular straight wing, C-wing, and box wing (not airfoils)
I want to know how to derive/ seperate induced drag from the parasite drag
So, I am making an experiment where I'm supposed to launch (in a fairly constant environment) model gliders with wing small aspect ratios and try to prove that box wings/ C- wings are the better option than straight wings. I have already designed a model with modular wings (symmetrical airfoil). I will measure the model's velocity and it's range.
How on earth would I differentiate between induced drag and parasite drag? Is there maybe a formula for that or do I need CFD software to calculate it or an easier option for those...?
If you have any ideas and/or ideas for improvement feel free to express them
I want to know how to derive/ seperate induced drag from the parasite drag
So, I am making an experiment where I'm supposed to launch (in a fairly constant environment) model gliders with wing small aspect ratios and try to prove that box wings/ C- wings are the better option than straight wings. I have already designed a model with modular wings (symmetrical airfoil). I will measure the model's velocity and it's range.
How on earth would I differentiate between induced drag and parasite drag? Is there maybe a formula for that or do I need CFD software to calculate it or an easier option for those...?
If you have any ideas and/or ideas for improvement feel free to express them