- #1
KOO
- 19
- 0
Prove that for all nEN
1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = (4n^3 - n) / 3My Solution)
If n = 1, 4(1)^3 - 1 / 3 = 1 so base case holds.
Assume 1^2 + 3^2 + ... + (2k-1)^2 = (4k^3 - k) / 3
What next?
1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = (4n^3 - n) / 3My Solution)
If n = 1, 4(1)^3 - 1 / 3 = 1 so base case holds.
Assume 1^2 + 3^2 + ... + (2k-1)^2 = (4k^3 - k) / 3
What next?