MHB Inequality Challenge: Prove $\sum_{1}^{n}$

Albert1
Messages
1,221
Reaction score
0
$n\in N,n\geq 2$

prove:

$ \sum_{1}^{n}(\dfrac{1}{2n-1}-\dfrac{1}{2n})>\dfrac {2n}{3n+1}$
 
Mathematics news on Phys.org
Albert said:
$n\in N,n\geq 2$

prove:

$ \sum_{1}^{n}(\dfrac{1}{2n-1}-\dfrac{1}{2n})>\dfrac {2n}{3n+1}$

My solution:

Note that

$$\begin{align*}1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\cdots+\frac{1}{2n-1}-\frac{1}{2n}&=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{1}{2n-1}-\frac{1}{2n}\\&=\left(1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\small\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\end{align*}$$

Therefore

$$\begin{align*}\sum_{k=1}^{n}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n}\right)&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\\&\ge \frac{(\overbrace{1+1+\cdots+1}^{\text{n times}})^2}{n+1+n+2+\cdots+2n}\,\,\text{(by the extended Cauchy-Schwarz inequality)}\\&=\frac{n^2}{\frac{n}{2}\left(n+1+2n\right)}\\&=\frac{2n}{3n+1}\,\,\,\,\text{(Q.E.D.)}\end{align*}$$
 
anemone said:
My solution:

Note that

$$\begin{align*}1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\cdots+\frac{1}{2n-1}-\frac{1}{2n}&=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{1}{2n-1}-\frac{1}{2n}\\&=\left(1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\small\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\end{align*}$$

Therefore

$$\begin{align*}\sum_{k=1}^{n}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n}\right)&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\\&\ge \frac{(\overbrace{1+1+\cdots+1}^{\text{n times}})^2}{n+1+n+2+\cdots+2n}\,\,\text{(by the extended Cauchy-Schwarz inequality)}\\&=\frac{n^2}{\frac{n}{2}\left(n+1+2n\right)}\\&=\frac{2n}{3n+1}\,\,\,\,\text{(Q.E.D.)}\end{align*}$$
very good your answer is correct!
 
My solution:

We wish to prove

$$\sum_{i=1}^n\left(\dfrac{1}{2i-1}-\dfrac{1}{2i}\right)\gt\dfrac{2n}{3n+1},\quad n\ge2,\quad n\in\mathbb{N}$$

I claim that

$$\sum_{i=1}^n\dfrac{2}{9i^2-3i-2}=\dfrac{2n}{3n+1}$$

Proof:

$$\dfrac{2}{9(1)^2-3(1)-2}=\dfrac{2(1)}{3(1)+1}=\dfrac12$$
$$\dfrac{2n}{3n+1}-\dfrac{2(n-1)}{3(n-1)+1}=\dfrac{2}{9n^2-3n-2}$$
$$\Rightarrow\dfrac{2n}{3n+1}=\dfrac{2(n-1)}{3(n-1)+1}+\dfrac{2}{9n^2-3n-2}$$

as required.

$$\sum_{i=1}^n\left(\dfrac{1}{4i^2-2i}-\dfrac{2}{9i^2-3i-2}\right)>0\quad\forall\, n>1$$
$$\text{Q.E.D.}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top