- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Prove that, for all real $a,\,b,\,c$ such that $a+b+c=3$, the following inequality holds:
$\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)\le 1$
$\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)\le 1$