Integrating to find average value

mariya259
Messages
17
Reaction score
0
I have the function:
f(x,y)= x*(y^2)*e^-((x^2+y^2)/4), with x and y from -3 to 3
I took the integral of this function and got 0 as my answer.
I need to find the average value, which is 1/area multiplied by the double integral. Since the double integral is 0, would the average value also be equal to 0?
How would I solve this?
 
Physics news on Phys.org
What is the whole question?
 
mariya259 said:
I have the function:
f(x,y)= x*(y^2)*e^-((x^2+y^2)/4), with x and y from -3 to 3
I took the integral of this function and got 0 as my answer.
I need to find the average value, which is 1/area multiplied by the double integral. Since the double integral is 0, would the average value also be equal to 0?
How would I solve this?
Yes, that integral is zero.

If this is a problem you have been given to work on, Please, give us the entire problem, word for word, as it was given to you.

I see that sharks beat me to the punch !
 
The whole question is to find the average value of
f(x,y)= x*(y^2)*e^-((x^2+y^2)/4), with x and y from -3 to 3

In my textbook the formula given to find it is
(1/Area)*∫∫f(x,y)
I took the double integral and found that the answer is 0.
The area would be 36, since both x and y are from -3 to 3.
1/36 * 0 = 0
Can the average value really be 0 though?
 
mariya259 said:
The whole question is to find the average value of
f(x,y)= x*(y^2)*e^-((x^2+y^2)/4), with x and y from -3 to 3

In my textbook the formula given to find it is
(1/Area)*∫∫f(x,y)
I took the double integral and found that the answer is 0.
The area would be 36, since both x and y are from -3 to 3.
1/36 * 0 = 0
Can the average value really be 0 though?
Yes! Why not ?
 
Notice it is an odd function when viewed from the x-axis. Try graphing it in wolfram alpha.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top