Integration of an inverse polynomial

Ado
Messages
26
Reaction score
4
Member advised that the homework template must be used
Hello,

I want to integrate this expression :

∫ (x5 + ax4 + bx3 + cx2 + dx)-1

between xmin>0 and xmax>0

a is positive but b, c and d can be positive or negative.

I have no idea to integrate this expression... Do you have methods to do this ?

Thanks in advance !
 
Physics news on Phys.org
You have not written a valid integral. You must reformulate your problem.
 
Ado said:
Hello,

I want to integrate this expression :

∫ (x5 + ax4 + bx3 + cx2 + dx)-1

between xmin>0 and xmax>0

a is positive but b, c and d can be positive or negative.

I have no idea to integrate this expression... Do you have methods to do this ?

Thanks in advance !

You can solve the problem when you are given numerical values of ##a,b,c,d##, by finding the roots of the polynomial using numerical methods, and so write the integrand in partial fractions. However, for general symbolic values of ##a,b,c,d## you are out of luck, because it is a rigorously-proven theorem that there is NO finite formula for the roots of a general polynomial of degree 5 or more. See, eg., https://en.wikipedia.org/wiki/Abel–Ruffini_theorem .
 
Sorry, I took dx to be the differential variable but I see now that you are using "d" as a constant, and that there must be an implied differential dx in your equation. Please ignore my post.
 
Never mind! ;)
Thanks for your replies!
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top