MHB Interpreting of another proposition full of symbols

  • Thread starter Thread starter kalish1
  • Start date Start date
  • Tags Tags
    Symbols
kalish1
Messages
79
Reaction score
0
Could someone help me interpret the following proposition full of symbols? I've been struggling to comprehend it as well. Thanks in advance.

Proposition: Suppose that $f:\mathbb{R^n} \rightarrow \mathbb{R^n}, g:\mathbb{R^n} \rightarrow \mathbb{R}$ is a positive function, and $\phi$ is the flow of the differential equation $\dot{x}=f(x)$. If the family of solutions of the family of initial value problems $$\dot{y} = g(\phi(y,\xi)),$$ $$y(0)=0,$$ with parameter $\xi \in \mathbb{R^n}$, is given by $\rho: \mathbb{R} \times \mathbb{R^n} \rightarrow \mathbb{R}$, then $\psi$, defined by $\psi(t,\xi)=\phi(\rho(t,\xi),\xi)$ is the flow of the differential equation $\dot{x}=g(x)f(x)$.

I have crossposted this here as well: differential equations - Interpreting another proposition full of symbols - Mathematics Stack Exchange
 
Physics news on Phys.org
kalish said:
Could someone help me interpret the following proposition full of symbols? I've been struggling to comprehend it as well. Thanks in advance.

Proposition: Suppose that $f:\mathbb{R^n} \rightarrow \mathbb{R^n}, g:\mathbb{R^n} \rightarrow \mathbb{R}$ is a positive function,
f is a function that maps n real variables to a value of n ordered numbers (OR f maps an n dimensional vector to an n dimensional vector). g is a function that maps n real variables to a single positive number (OR g maps an n dimensional vector to a single number).

and $\phi$ is the flow of the differential equation $\dot{x}=f(x)$.
\phi is the general solution to the differential equation. Note that the equation can be thought of as a set of n interrelated differential equations.

If the family of solutions of the family of initial value problems $$\dot{y} = g(\phi(y,\xi)),$$ $$y(0)=0,$$ with parameter $\xi \in \mathbb{R^n}$, is given by $\rho: \mathbb{R} \times \mathbb{R^n} \rightarrow \mathbb{R}$, then $\psi$, defined by $\psi(t,\xi)=\phi(\rho(t,\xi),\xi)$ is the flow of the differential equation $\dot{x}=g(x)f(x)$.

I have crossposted this here as well: differential equations - Interpreting another proposition full of symbols - Mathematics Stack Exchange
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top