Introducing LaTeX Math Typesetting

In summary, Physicsforums.com has introduced the addition of LaTeX mathematical typesetting to their forum software. This professional-grade typesetting system allows for pleasing mathematical presentation and can be included in any post on the forum. Users can include LaTeX graphics by using the [ tex ]...[ /tex ] or [ itex ]...[ /itex ] tags, with the latter being used for inline graphics. The forum provides a pdf file and symbol reference for the most useful LaTeX commands, symbols, and constructs. The amsmath package is also available for more information. Examples of various techniques are provided, including subscripts, superscripts, and equations. Users can also use the [ tex usepackage= ] tag to include additional packages.
  • #526
Testing...

[tex] {\int_1^\sqrt{x}} t^{x}dt[/tex]
 
Physics news on Phys.org
  • #527
Testing...

If the functions [tex] f(x,t)[/tex] and
[tex]\frac{\partial}{\partial t}f(x,t)[/tex] are continuous in
[tex] [a,b] \times [c,d] [/tex], then [tex] \frac{d}{dt}\int_a^{b}f(x,t)dx = \int_a^{b}\frac{\partial}{\partial t}f(x,t)dx.[/tex]
 
  • #528
[tex] \sqrt{Opposite^2 + Adjacent^2} = Hypotenuse[/tex]
 
  • #529
I too am just testing
[tex] \int dx \int dy \exp (-a (x+y)^2 +ib(x-y)) sinc(cx+dy) sinc(dx+cy) [/tex]
 
Last edited:
  • #530
[tex] \sqrt{cool} = \sqrt{me} . \ me^2=me. \ cool^2=awesome. \ so \ me = awesome [/tex]
 
Last edited:
  • #531
QUESTION...

In the archives for this forum, someone suggested the following site for a script on how to put in wick contractions into latex:

http://www.fzu.cz/~kolorenc/tex.php

The post suggested using simple_wick.tex, saying it worked very well.

I agree that it works... but I can't figure out how to use it. That is, the example works well, and I can toy around and get random results, but I can't figure out what the logical rules are to use this script. Any ideas?


Flip
 
  • #532
As x tends to infinity, the limit of 1/x is such that

[tex]
\mathop {\lim }\limits_{x \to \infty } f(x) = 0
[/tex]

Works kinda well, doesn't it? Too bad it doesn't work on my computer... :mad:
 
  • #533
[tex]
T = \frac{1}{f} = 2 \pi \sqrt \frac{l}{g}
[/tex]
 
Last edited:
  • #534
Let the function [itex]f[/itex] be continuos on the closed interval [itex][a, b][/itex], and assume that [itex]f(x) \geq 0[/itex] for all [itex]x[/itex] in [itex][a, b][/itex]. If [itex]S[/itex] is the solid of revolution obtained by revolving about the [itex]x[/itex] axis the region bounded by the curve [itex]y = f(x)[/itex], the [itex]x[/itex] axis, and the lines [itex]x = a[/itex] and [itex]x = b[/itex], and if [itex]V[/itex] is the number of cubic units in the volume of [itex]S[/itex], then

[tex]V = \pi \int^b_{a}[f(x)]^2 dx[/tex]
 
Last edited:
  • #535
[ tex ] a^x_n [ /tex ]
 
  • #536
Just a test

[tex] a^_x [/tex]
 
  • #537
I think we all know Taylor expansion:

[tex] \boxed{f\left( x \right) = \sum\limits_{n = 0}^\infty {\frac{{f^{\left( n \right)} \left( a \right)}}{{n!}}\left( {x - a} \right)^n } ,\left| {x - a} \right| < R} [/tex]
 
  • #538
[tex]F_{1}+F{2}[/tex]

just testing
 
Last edited:
  • #539
level: 1
[tex]
\sum_{j=0}^m a + cj = \frac{(m + 1)(2a + cm)}{2}
[/tex]

level: 2
[tex]
\sum_{j=0}^m \frac{(j + 1)(2a + cj)}{2} = \frac{(m + 1)(m + 2)(3a + cm)}{6}\\
[/tex]

level: 3
[tex]
\sum_{j=0}^m \frac{(j + 1)(j + 2)(3a + cj)}{6} = \frac{(m + 1)(m + 2)(m + 3)(4a + cm)}{24}\\
[/tex]

level: 4
[tex]
\sum_{j=0}^m \frac{(j + 1)(j + 2)(j + 3)(4a + cj)}{24} = \frac{(m + 1)(m + 2)(m + 3)(m + 4)(5a + cm)}{120}\\
[/tex]

level: n
[tex]
= \frac{(m + n)!(a(n + 1) + cm)}{m!(n + 1)!}
[/tex]

As product
[tex]
\frac{(m + n)!(a(n + 1) + cm)}{m!(n + 1)!} = (a(n + 1) + cm) \prod_{j=1}^n \frac{m + j}{j + 1}
[/tex]
 
  • #540
Did I mention Mathematica has an Eigenvector[Matrix] command? However, I'm not good at calculating eigenvectors so I really should do a few by hand:

The eigenvector equation is simple:

[tex]
\mathbf{M}v=\lambda v
[/tex]

So for:

[tex]
\lambda_1=-1
[/tex]

[tex]
\left(
\begin{array}{ccc} 1 & 0 & 3 \\
0 & -1 & 0 \\
-3 & 0 & 1
\end{array}
\right)
\left(
\begin{array}{c} x \\
y \\
z
\end{array}
\right)=-1
\left(
\begin{array}{c} x \\
y \\
z
\end{array}
\right)
[/tex]

So:

[tex]
x+3z=-x\\
-y=-y\\
-3x+z=-z
[/tex]

The middle one is easy:

[tex]
0y=0
[/tex]

That means y can be anything so let y=1.
The other two:

[tex]
2x+3z=0
-3x+2z=0
[/tex]

The simple thing here, since we're looking for ANY eigenvector, is to just pick the zero solution and thus:

[tex]
v_1=
\left(
\begin{array}{c} 0 \\
1 \\
0
\end{array}
\right)
[/tex]

For:
[tex]
\lambda_2=(1+3i)
[/tex]

[tex]
\left(
\begin{array}{ccc} 1 & 0 & 3 \\
0 & -1 & 0 \\
-3 & 0 & 1
\end{array}
\right)
\left(
\begin{array}{c} x \\
y \\
z
\end{array}
\right)=(1+3i)
\left(
\begin{array}{c} x \\
y \\
z
\end{array}
\right)
[/tex]

So that's:

[tex]
x+3z=(1+3i)x
-y=(1+3i)y
-3x+z=(1+3i)z
[/tex]

For the middle one, the only way ay=y is if y=0. The other two yield:
[tex]
3z=3ix
[/tex]

or:

z=ix

so let x=1 and z=i.

Thus:

[tex]
v_2=
\left(
\begin{array}{c} 0 \\
1 \\
0
\end{array}
\right)
[/tex]

Same dif for the other eigenvalue which yields:
[tex]
v_3=
\left(
\begin{array}{c} 1 \\
0 \\
-i
\end{array}
\right)
[/tex]

Mathematica returns equivalent eigenvectors.
Thus we are led to the solution in matrix form:

[tex]
\mathbf{x}=c_1e^{-t}
\left(
\begin{array}{c} 0 \\
1 \\
0
\end{array}
\right)+
c_2e^{(1+3i)t}
\left(
\begin{array}{c} 1 \\
0 \\
i
\end{array}
\right)+
c_3e^{(1-3i)t}
\left(
\begin{array}{c} 1 \\
0 \\
-i
\end{array}
\right)
[/tex]

You ever work a problem and the answer is just as difficult as the question?
 
Last edited:
  • #541
After reviewing, I wish to clear up two points in my efforts to solve this equation:

1. There is no need to directly calculate the eigenvector of [itex] \lambda_3[/itex]:

The complex conjugate of an eigenvector for [itex] \lambda_2[/itex] is an eigenvector for [itex]\lambda_3[/tex].

So above I calculated the eigenvector for [itex](1+3i)[/itex] to be:

[tex]v_2=\left(\begin{array}{c} 1 \\0 \\i\end{array}\right)[/tex]

Therefore to calculate the eigenvector for [itex](1-3i)[/itex], conjugate the eigenvector for [itex](1+3i)[/tex]:

If:

[tex]v_2=\left(\begin{array}{c} 1+0i \\0+0i \\0+i\end{array}\right)[/tex]

Then:

[tex]\overline{v_2}=v_3=\left(\begin{array}{c} 1-0i \\0-i \\0-i\end{array}\right)=\left(\begin{array}{c} 1 \\0 \\-i\end{array}\right)[/tex]

See how that works?

Ok that's one.

2. The complex eigenvalues both yield the same solution! That is, the solution from (1+3i) is the same solution as that from (1-3i). Go figure. I did. So that's the reason we only need calculate the Real and Complex contribution from ONE member of each complex pair. And also, it's VERY convenient to write the eigenvectors as:

[tex]\left(\begin{array}{c} 1 \\0 \\-i\end{array}\right)=\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)+i\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)[/tex]

Alright, so let's compute the Real part and the Complex part for:

[tex]
\begin{align*}
e^{(1+3i)t}\left(\begin{array}{c} 1 \\0 \\i\end{array}\right)
&=e^{(1+3i)t}\left[\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)+i\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right] \\
&=e^t\left[(Cos(3t)+iSin(3t))\left\{\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)+
i\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right\}\right] \\
&=e^t\left[Cos(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)+iCos(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)+iSin(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)-Sin(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right] \\
&=e^t\left[C_1\left\{Cos(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)-Sin(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right\}+C_2\left\{Cos(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)+Sin(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)\right\}\right]
\end{align}
[/tex]

This with the first solution then yields the general solution:

[tex]
\begin{align*}
\mathbf{X}&=C_1e^{-t}\left(\begin{array}{c} 0 \\1 \\0\end{array}\right) \\
&+e^t\left[C_2\left\{Cos(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)-Sin(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right\}+C_3\left\{Cos(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)+Sin(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)\right\}\right]
\end{align}
[/tex]

That's read as:

[tex]x(t)=C_2e^tCos(3t)+C_3e^tSin(3t)[/tex]

[tex]y(t)=C_1e^{-t}[/tex]

[tex]z(t)=-C_2e^tSin(3t)+C_3e^tCos(3t)[/tex]
 
Last edited:
  • #542
[tex]avg=\frac{n_1+n_2+n_3+n_4+n_5}{n}[/tex][tex]dv_n=average-reading_n[/tex]
[tex]\delta=\sqrt{\frac{dv_1^2+dv_2^2+dv_3^2+dv_4^2+dv_5^2}{n-1}}[/tex]
[tex]\delta_{avg}=\frac{\delta}{\sqrt{n}}[/tex][tex]v_n=\frac{d_n}{t_n}[/tex][tex]\Delta v_n=v_n\sqrt{(\frac{\Delta L}{l})^2+(\frac{\Delta t_n}{t_n})^2}[/tex][tex]\rho_n=m_n(\frac{3}{4\pi})(\frac{d_n}{2})^{-3}[/tex][tex]\Delta\rho_n=6\sqrt{\frac{9\Delta d_n^2m_n^2}{\pi^2d_n^8}+\frac{\Delta m_n^2}{\pi^2d_n^6}}[/tex]

[tex]\eta_n=(\frac{2g}{9v_n})(\frac{d_n}{2})^2(\rho_n-\rho_l)[/tex]
 
Last edited by a moderator:
  • #543
[tex]\Delta\eta_n=\frac{2}{9}\sqrt{\frac{4\Delta r_n^2g^2r_n^2(\rho_n-\rho_l)^2}{v_n^2}+\frac{\Delta\rho_n^2g^2r_n^4}{v_n^2}+\frac{\Delta g^2r_n^4(\rho_n-\rho_l)^2}{v_n^2}+\frac{\Delta\rho_l^2g^2r_n^4}{v_n^2}+\frac{\Delta v_n^2g^2r_n^4(\rho_n-\rho_l)^2}{v_n^4}}[/tex]
 
  • #544
[tex]m_{avg}=\frac{19.837+19.839+19.840+19.841+19.840}{5}=19.84 g[/tex]

[tex]v_G=\frac{0.50}{24.25}= 0.0206 m/s[/tex]

[tex]\rho_G=0.01984(\frac{3}{4\pi})(\frac{0.02451}{2})^{-3}= 2573 kg/m^3[/tex]

[tex]\eta_G=(\frac{2g}{9(0.0206)})(\frac{0.02451}{2})^2(2573-1013)= 24.77 kg/ms[/tex]
 
Last edited by a moderator:
  • #545
[tex]dv_1=24.51-24.70= -0.19 mm[/tex]
[tex]dv_2=24.51-24.40= 0.11 mm[/tex]
[tex]dv_3=24.51-24.44= 0.07 mm[/tex]
[tex]dv_4=24.51-24.32= 0.19 mm[/tex]
[tex]dv_5=24.51-24.68= -0.17mm[/tex]
[tex]\delta_G=\sqrt{\frac{-0.19^2+0.11^2+0.07^2+0.19^2+-0.17^2}{5-1}}= 0.1718 mm[/tex]
[tex]\delta_{avg of G}=\frac{0.1718}{\sqrt{5}}= 0.07683 mm[/tex]

[tex]\Delta v_G=0.0206\sqrt{(\frac{0.003}{0.50})^2+(\frac{\0.1566}{24.25})^2}= 0.00018 m/s[/tex]

[tex]\Delta\rho_G=6\sqrt{\frac{9(0.00007683)^2(0.01984)^2}{\pi^20.02451^8}+\frac{0.00005^2}{\pi^20.02451^6}}= 25.05 kg/m^3[/tex]
 
Last edited by a moderator:
  • #546
[tex]\heartsuit I LOVE YOU ALEX \heartsuit[/tex]
 
  • #547
[tex]\Delta\eta_G=\frac{2}{9}\sqrt{\frac{4(0.000038415)^2(9.8)^2(0.012255)^2(2573-1013)^2}{0.0206^2}+\frac{(25.05)^2(9.8)^2(0.012255)^4}{0.0206^2}[/tex]

[tex]\sqrt{adfsadfasf+\frac{(0.005)^2(0.012255)^4(2573-1013)^2}{0.0206^2}+\frac{(5)^2(9.8)^2(0.012255)^4}{0.0206^2}
+\frac{(0.00018)^2(9.8)^2(0.012255)^4(2573-1013)^2}{0.0206^4}}= 0.4854 kg/ms}[/tex]
 
Last edited by a moderator:
  • #548
sorry everyone.. just testing for a lab report
 
  • #549
First, let's clean up the functional: Really, if we want to minimize that integral, we can just move U across the integral sign right, and let's put the exponential in the numerator:

[tex]\mathbf{T}[y(x)]=\frac{1}{U}\int_{p_1}^{p_2} e^{y/h}\sqrt{1+(y^{'})^2}dx[/tex]


So:

[tex]F(x,y,y^{'})=e^{y/h}\sqrt{1+(y^{'})^2}[/tex]

and therefore:

[tex]\frac{\partial F}{\partial y}=\frac{e^{y/h}\sqrt{1+(y^{'})^2}}{h}[/tex]

and:

[tex]\frac{\partial F}{\partial y^{'}}=\frac{e^{y/h}y^{'}}{\sqrt{1+(y^{'})^2}}[/tex]

and so:

[tex]
\begin{align*}
\frac{d}{dx}\left(\frac{\partial F}{\partial y^{'}}\right)&=\frac{d}{dx}\left[\frac{e^{y/h}y^{'}}{\sqrt{1+(y^{'})^2}}\right] \\

&=\frac{d}{dx}\left[e^{y/h}y^{'} \cdot \frac{1}{\sqrt{1+(y^{'})^2}}\right] \\

&=\left[e^{y/h}y^{'}\cdot\frac{-1/2}{(1+(y^{'})^2)^{3/2}}\cdot 2 y^{'}y^{''} \\

&+\frac{1}{\sqrt{1+(y^{'})^2}}\left(e^{y/h}y^{''}+y^{'}\frac{1}{h}y^{'}e^{y/h}\right) \\

&=\frac{e^{y/h}y^{''}}{\sqrt{1+(y^{'})^2}}-\frac{e^{y/h}(y^{'})^2y^{''}}{(1+(y^{'})^2)^{3/2}}+
\frac{e^{y/h}(y^{'})^2}{h\sqrt{1+(y^{'})^2}}







\end{align}
[/tex]

So, once we obtain the partials, then we substitute them into the Euler equation and equate the expression to zero. Now, can you please substitute these expressions into:

[tex]\frac{\partial F}{\partial y}-\frac{d}{dx}\left(\frac{\partial F}{\partial y^{'}}\right)=0[/tex]

and post the results?

Also, with regards to h=1: I just worked the problem with that value and obtained the results you indicated. Perhaps it works for any value of h. Not sure.
 
Last edited:
  • #550
[tex]\heartsuit I\; Love\; You\; Alex! \heartsuit[/tex]
 
  • #551
[tex]\Delta\eta_G=\frac{2}{9}\sqrt{\frac{4(0.000038415) ^2(9.8)^2(0.012255)^2(2573-1013)^2}{0.0206^2}+\frac{(25.05)^2(9.8)^2(0.012255 )^4}{0.0206^2}+\frac{(0.005)^2(0.012255)^4(2573-1013)^2}{0.0206^2}+\frac{(5)^2(9.8)^2(0.012255)^4} {0.0206^2}+\frac{(0.00018)^2(9.8)^2(0.012255)^4(2573-1013)^2}{0.0206^4}}= 0.4854 kg/ms}[/tex]
 
  • #552
[tex]\overrightarrow{F_f}=-6\pi\eta(\frac{d}{2})\overrightarrow{v}[/tex]

[tex]\overrightarrow{mg}=\frac{4}{3}\pi(\frac{d}{2})^3\rho_s\overrightarrow g[/tex]

[tex]\overrightarrow{F_b}=-\frac{4}{3}\pi(\frac{d}{2})^3\rho_l\overrightarrow g[/tex]

[tex]\overrightarrow{F_b}+\overrightarrow{F_f}+\overrightarrow{mg} = 0[/tex]
 
Last edited by a moderator:
  • #553
[tex]avg=\frac{x_1+x_2+x_3+...+x_n}{n}[/tex]
 
  • #554
test

[tex]
\int_{0}^{1} x dx = \left[ \frac{1}{2}x^2 \right]_{0}^{1} = \frac{1}{2}
[/tex]
Let [tex]\theta[/tex] be a (p+1)-form defined on the ranges of all the cubes of a p-chain, where p>0. Then [tex]\int_{C} d \theta = \int_{\partial C} \theta[/tex]
[tex]
Let\; \theta\; be\; a (p+1)-form\; defined\; on\; the\; ranges\; of\; all\; the\; cubes\; of\; a\; p-chain,\; where\; p>0.\; Then \int_{C} d \theta = \int_{\partial C} \theta.
[/tex]
 
Last edited:
  • #555
[tex]e=\frac{f}{a}[/tex]
[tex]e=\sqrt{1-\frac{b^2}{a^2}}[/tex]
 
  • #556
[tex]\bigoplus[/tex]



asdf
 
  • #557
[tex]F_b=m_ba_b[/tex]
[tex]F_e=m_ea_e[/tex]
[tex]F_b=F_e[/tex]
[tex]m_ba_b=m_ea_e[/tex]
[tex]\frac{m_b}{m_e}=\frac{a_e}{a_b}[/tex]
 
  • #558
s

[tex]\nabla \cross E=0 [/tex]
[tex]\nabla \cdot E =\frac {\rho}{\epsilon_0}[/tex]

abc
 
Last edited:
  • #559
Taken [tex]\sum F = m_1 \cdot a [/tex]
We have [tex] \sum F_x = m_1 \cdot a_x [/tex] and [tex] \sum F_y = m_1 \cdot a_y [/tex]
With [tex] a_y = 0 [/tex]
We We have [tex] \sum F_x = m_1 \cdot a_x [/tex] and [tex] \sum F_y = 0 [/tex]
So [tex] T = m_1 \cdot a_x [/tex]
Taken [tex]\sum F = m_2 \cdot a [/tex]
We have [tex]\sum F_y = m_2 \cdot a_y [/tex]
Which is [tex]m_2 \cdot g - T = m_2 \cdot a [/tex]
Inserting [tex] T = m_1 \cdot a_x [/tex] into [tex]m_2 \cdot g - T = m_2 \cdot a [/tex] and solving for [tex]a[/tex],
We get [tex] a = \frac {m_2 \cdot g} {m_1 + m_2}[/tex]
Inserting this into [tex] T = m_1 \cdot a[/tex],
we get [tex] T = \frac {m_1 \cdot m_2 \cdot g} {m_1 = m_2} [/tex]Now, taken [tex] v^2 = v_0^2 + 2a\deltax [/tex]
 
Last edited:
  • #560
Taken [tex]\sum F = m_1 \cdot a [/tex]
We have [tex] \sum F_x = m_1 \cdot a_x [/tex] and [tex] \sum F_y = m_1 \cdot a_y [/tex]
With [tex] a_y = 0 [/tex]
We We have [tex] \sum F_x = m_1 \cdot a_x [/tex] and [tex] \sum F_y = 0 [/tex]
So [tex] T = m_1 \cdot a_x [/tex]
Taken [tex]\sum F = m_2 \cdot a [/tex]
We have [tex]\sum F_y = m_2 \cdot a_y [/tex]
Which is [tex]m_2 \cdot g - T = m_2 \cdot a [/tex]
Inserting [tex] T = m_1 \cdot a_x [/tex] into [tex]m_2 \cdot g - T = m_2 \cdot a [/tex] and solving for [tex]a[/tex],
We get [tex] a = \frac {m_2 \cdot g} {m_1 + m_2}[/tex]
Inserting this into [tex] T = m_1 \cdot a[/tex],
we get [tex] T = \frac {m_1 \cdot m_2 \cdot g} {m_1 = m_2} [/tex]


Now, taken [tex] v^2 = v_0^2 + 2a\delta x [/tex]
 

Similar threads

Replies
5
Views
2K
Replies
3
Views
1K
Replies
4
Views
2K
Replies
8
Views
2K
Replies
3
Views
933
Replies
2
Views
1K
Back
Top