Introductory Acoustics Homework Help

AI Thread Summary
The discussion focuses on solving introductory acoustics homework problems from "Theory of Vortex Sound." The user is struggling particularly with questions Q2, Q3, and Q4, noting issues with integrating terms that diverge as r approaches infinity and the role of pressure and velocity in the equations. Clarifications are provided regarding the relevance of large r discussions and the need for substitutions to relate pressure and velocity. The differences between the oscillations described in Q2 and Q3 are also highlighted, with Q2 involving translational oscillations of a sphere. Overall, the conversation emphasizes the importance of understanding the relationships between variables and the specific conditions of the problems.
davon806
Messages
147
Reaction score
1

Homework Statement


Hi there,
I am a beginner in acoustics and there are severals problems I am currently struggling while I was reading the first chapter of "Theory of Vortex Sound" (available on Google books).

New Bitmap Image (3).jpg


Homework Equations


For Q4[/B]:
B015988463_271-361.jpg

The Attempt at a Solution


For Q2 and 3, as underlined in the first picture, if the velocity and pressure doesn't go like 1/r , the integral will diverge as r-> inf. However, there are no 1/r terms in U0cos(wt)

For Q4,

31afc7e1-17c7-495e-9f92-248600d71349.jpg


I am not sure how to proceed, since the variable y is contained in two terms within the dirac delta,I don't know how to eliminate it.

BTW, I googled sth that might be helpful for Q4.
a.jpg


(From P.115-116 of https://books.google.co.uk/books?id...WAhVKDxoKHe_nDiQQ6AEIMjAC#v=onepage&q&f=false )

Thanks very much!
 
  • Like
Likes dundeegogo
Physics news on Phys.org
For Q2, I feel the discussion about large r that follows eqn 1.8.4 is not relevant. You have no idea what p is.
Note that in the eqn. the left side involves p and v. A substitution is then made to eliminate v in favour of p.
In Q2 you are given information about v but not p. What alternative step does that suggest?
 
haruspex said:
For Q2, I feel the discussion about large r that follows eqn 1.8.4 is not relevant. You have no idea what p is.
Note that in the eqn. the left side involves p and v. A substitution is then made to eliminate v in favour of p.
In Q2 you are given information about v but not p. What alternative step does that suggest?

Since v = U0cos(wt) and using the substitution v = p/ρ0c0 , rearranging we can solve for p. Then I use eq 1.8.4 with the integrand
pv = U0 ^2 cos^2 (ωt) ρ0 c0 .But then the integrand doesn't go like 1/r^2 ,when I integrate over the surface it gives a 4πr^2 term.

In addition, I am not sure on the difference between Q2 and Q3. I guess the surface area for Q3 is like 4πr^2,but have no idea on Q2.
 
davon806 said:
But then the integrand doesn't go like 1/r^2
You don't need it to. As I wrote, we are not here considering large r. This is the radius R of the compact sphere. We are told it makes small oscillations, so to a first approximation its area is always 4πR2.
 
davon806 said:
I am not sure on the difference between Q2 and Q3
I had not read Q3. Now that I have I realize that is the question I have been leading you to answer.
Q2 says translational oscillations, i.e. the sphere is oscillating side-to-side.
You could try to figure out the correct integral for that, remembering that the vr in the equation is the component of velocity normal to the surface element dS. Or maybe there is a shortcut.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top