- #1
evinda
Gold Member
MHB
- 3,836
- 0
Proposition:
The set $\omega \times \omega$ is equinumerous with $\omega$, i.e. the set $\omega \times \omega$ is countable.
"Intuitive Proof"
$$\mathbb{N}^2=\{ (n,m): n,m \in \mathbb{N} \}$$
View attachment 3825
$$1 \mapsto a_{11}$$
$$2 \mapsto a_{12}$$
$$3 \mapsto a_{31}$$
$$4 \mapsto a_{22}$$
$$5 \mapsto a_{13}$$
$$6 \mapsto a_{14}$$
$$7 \mapsto a_{23}$$
$$\ \ \ \ \cdots \cdots \\ \ \ \ \ \cdots \cdots \\ \ \ \ \ \cdots \cdots$$Could you explain me the intuitive proof? (Thinking)
The set $\omega \times \omega$ is equinumerous with $\omega$, i.e. the set $\omega \times \omega$ is countable.
"Intuitive Proof"
$$\mathbb{N}^2=\{ (n,m): n,m \in \mathbb{N} \}$$
View attachment 3825
$$1 \mapsto a_{11}$$
$$2 \mapsto a_{12}$$
$$3 \mapsto a_{31}$$
$$4 \mapsto a_{22}$$
$$5 \mapsto a_{13}$$
$$6 \mapsto a_{14}$$
$$7 \mapsto a_{23}$$
$$\ \ \ \ \cdots \cdots \\ \ \ \ \ \cdots \cdots \\ \ \ \ \ \cdots \cdots$$Could you explain me the intuitive proof? (Thinking)