- #1
AbigailM
- 46
- 0
I'm currently preparing for a classical prelim and am concerned that this problem may not be correct. I'm second guessing myself due to the hint given in the problem, which I did not use. Any help is more than appreciated. A picture of the pendulum is included.
A thin pencil with length 20 cm is balanced on a desktop, standing on its point so that its angle of inclination [itex]\theta[/itex] with respect to the vertical is nearly zero. A small perturbation is sufficient to tip it over. Suppose that initially, [itex]\theta (0) = 1 x 10^{-17} radians[/itex] and [itex]\dot{\theta(0)} = 0[/itex]. Assuming that the pencil point remains fixed, in how many second will it tip over on its side through and angle of [itex]90^{°}[/itex]?
Hint: The following integral, accurate for [itex]\theta_{0} < 0.01[/itex] may be useful.
[itex]\int_{\theta_{0}}^{\pi /2} \frac{d \theta}{\sqrt{cos \theta_{0}-cos \theta}} \cong -\sqrt{2} ln \theta_{0} + 1.695[/itex]
[itex]g = 9.8m/s^{2}[/itex]
[itex]l = 20cm = .20m[/itex]
[itex]I = I_{cm} + mh^{2} ; h = l/2[/itex]
[itex] = \frac{1}{12} ml^{2} + \frac{1}{4} ml^{2}[/itex]
[itex] = \frac{4}{12} ml^{2}[/itex]
[itex]T = \frac{1}{2}I \dot{\theta^{2}} = \frac{1}{2}(\frac{4}{12}ml^{2})\dot{\theta^{2}} = \frac{1}{6}ml^{2}\dot{\theta^{2}}[/itex]
[itex]U = mg \frac{l}{2} cos \theta[/itex]
[itex]L = T - U = \frac{1}{6}ml^{2}\dot{\theta^{2}} - mg\frac{l}{2}cos\theta[/itex]
[itex]\frac{\partial L}{\partial \theta} = mg\frac{l}{2}sin\theta[/itex]
[itex]\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) = \frac{1}{3}ml^{2}\ddot{\theta}[/itex]
[itex]\ddot{\theta} = \frac{3g}{2l} sin \theta = \omega^{2} sin \theta \hspace{1 in} \omega = \sqrt{\frac{3g}{2l}} = 8.58 \frac{rad}{s}[/itex]
We can use small angle approximation so [itex]\ddot{\theta} \approx \omega^{2} \theta[/itex]
[itex]\theta (t) = Ae^{\omega t} + Be^{-\omega t} \hspace{1 in} \dot{\theta (t)} = \omega Ae^{\omega t} - \omega Be^{-\omega t}[/itex]
[itex]\dot{\theta} (0) = \omega A - \omega B = 0 \hspace{1 in} ; A = B[/itex]
[itex]\theta (t) = A \left(e^{\omega t} + e^{- \omega t}\right) = 2Acosh(\omega t)[/itex]
[itex]\theta (0) = 2A = 1 x 10^{-17} rad[/itex]
[itex]\theta (t) = (1 x 10^{-17})cosh(\omega t)[/itex]
[itex]\theta (t) = \frac{\pi}{2} - 1 x 10^{-17} rad \approx \frac{\pi}{2}[/itex]
[itex]\theta (t) = \frac{\pi}{2} = (1 x 10^{-17})cosh(\omega t)[/itex]
[itex]\frac{\pi}{2 x 10^{-17}} = cosh(\omega t)[/itex]
[itex]t = \left(\frac{1}{\omega} \right) cosh^{-1} \left(\frac{\pi}{2 x 10^{-17}}\right) = \frac{1}{8.58} cosh^{-1}\left(\frac{\pi}{2 x 10^{-17}}\right)[/itex]
[itex]t \approx 4.7s[/itex]
Homework Statement
A thin pencil with length 20 cm is balanced on a desktop, standing on its point so that its angle of inclination [itex]\theta[/itex] with respect to the vertical is nearly zero. A small perturbation is sufficient to tip it over. Suppose that initially, [itex]\theta (0) = 1 x 10^{-17} radians[/itex] and [itex]\dot{\theta(0)} = 0[/itex]. Assuming that the pencil point remains fixed, in how many second will it tip over on its side through and angle of [itex]90^{°}[/itex]?
Hint: The following integral, accurate for [itex]\theta_{0} < 0.01[/itex] may be useful.
[itex]\int_{\theta_{0}}^{\pi /2} \frac{d \theta}{\sqrt{cos \theta_{0}-cos \theta}} \cong -\sqrt{2} ln \theta_{0} + 1.695[/itex]
Homework Equations
[itex]g = 9.8m/s^{2}[/itex]
[itex]l = 20cm = .20m[/itex]
[itex]I = I_{cm} + mh^{2} ; h = l/2[/itex]
[itex] = \frac{1}{12} ml^{2} + \frac{1}{4} ml^{2}[/itex]
[itex] = \frac{4}{12} ml^{2}[/itex]
The Attempt at a Solution
[itex]T = \frac{1}{2}I \dot{\theta^{2}} = \frac{1}{2}(\frac{4}{12}ml^{2})\dot{\theta^{2}} = \frac{1}{6}ml^{2}\dot{\theta^{2}}[/itex]
[itex]U = mg \frac{l}{2} cos \theta[/itex]
[itex]L = T - U = \frac{1}{6}ml^{2}\dot{\theta^{2}} - mg\frac{l}{2}cos\theta[/itex]
[itex]\frac{\partial L}{\partial \theta} = mg\frac{l}{2}sin\theta[/itex]
[itex]\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) = \frac{1}{3}ml^{2}\ddot{\theta}[/itex]
[itex]\ddot{\theta} = \frac{3g}{2l} sin \theta = \omega^{2} sin \theta \hspace{1 in} \omega = \sqrt{\frac{3g}{2l}} = 8.58 \frac{rad}{s}[/itex]
We can use small angle approximation so [itex]\ddot{\theta} \approx \omega^{2} \theta[/itex]
[itex]\theta (t) = Ae^{\omega t} + Be^{-\omega t} \hspace{1 in} \dot{\theta (t)} = \omega Ae^{\omega t} - \omega Be^{-\omega t}[/itex]
[itex]\dot{\theta} (0) = \omega A - \omega B = 0 \hspace{1 in} ; A = B[/itex]
[itex]\theta (t) = A \left(e^{\omega t} + e^{- \omega t}\right) = 2Acosh(\omega t)[/itex]
[itex]\theta (0) = 2A = 1 x 10^{-17} rad[/itex]
[itex]\theta (t) = (1 x 10^{-17})cosh(\omega t)[/itex]
[itex]\theta (t) = \frac{\pi}{2} - 1 x 10^{-17} rad \approx \frac{\pi}{2}[/itex]
[itex]\theta (t) = \frac{\pi}{2} = (1 x 10^{-17})cosh(\omega t)[/itex]
[itex]\frac{\pi}{2 x 10^{-17}} = cosh(\omega t)[/itex]
[itex]t = \left(\frac{1}{\omega} \right) cosh^{-1} \left(\frac{\pi}{2 x 10^{-17}}\right) = \frac{1}{8.58} cosh^{-1}\left(\frac{\pi}{2 x 10^{-17}}\right)[/itex]
[itex]t \approx 4.7s[/itex]