I Irreducible polynomials and prime elements

darksidemath
Messages
2
Reaction score
0
TL;DR Summary
How can I show that p is a prime element of Z[√3]?
let p∈Z a prime how can I show that p is a prime element of Z[√3] if and only if the polynomial x^2−3 is irreducible in Fp[x]? ideas or everything is well accepted :)
 
Physics news on Phys.org
If ##p\in R## is prime, then ##R/(p)## is an integral domain.

If ##x^2-3\in \mathbb{Z}_p[x]## is irreducible, then ##\mathbb{Z}_p[x]/(x^2-3)\cong \mathbb{Z}_p[\sqrt{3}]\cong \mathbb{Z}[\sqrt{3}]/(p)## is an integral domain.
 
  • Like
Likes darksidemath
fresh_42 said:
If ##p\in R## is prime, then ##R/(p)## is an integral domain.

If ##x^2-3\in \mathbb{Z}_p[x]## is irreducible, then ##\mathbb{Z}_p[x]/(x^2-3)\cong \mathbb{Z}_p[\sqrt{3}]\cong \mathbb{Z}[\sqrt{3}]/(p)## is an integral domain.
I thought the quotient by the ideal generated by an irreducible is a field, not just an integral domain.
 
It's a field if the ideal is maximal. There are no problems in principal ideal domains, but the general case is more complicated.
 
Aren't ideals generated by irreducible polynomials maximal?
 
WWGD said:
Aren't ideals generated by irreducible polynomials maximal?
I'm not sure and have been too lazy to think about it. E.g. we could have a situation ##(p) \subsetneq (p,q) \subsetneq R.##
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top