You couldn't have a "line which smoothly develops into a surface".
Suppose for the sake of contradiction such a manifold, M, existed. Then about some point p, there would be a 1 dimensional coordinate chart, and about some point q, a 2 dimensional coordinate chart.
Now, by "smoothly develops into a surface", I assume you mean that the manifold is path-connected. So let g(t) be a curve connecting p and q. i.e., g(0) = p and g(1) = q.
Now, as [0,1] is compact, its image g([0,1]) is compact in M. However, about every point x in the image g([0,1]) there is an open neighborhood U(x) which is homeomorphic to either R^1 or R^2. As the image g([0,1]) is compact, only a finite number of these open sets U(x) suffice to cover g([0,1]).
But then we have reached a contradiction, because in that finite subcollection of open sets, there must be two partially overlapping neighborhoods, one homeomorphic to R^1, the other to R^2. This is a contradiction, because their intersection (or any open set for that matter) cannot possibly be homeomorphic to both R^1 and R^2