I Is energy always conserved in a co-rotating frame?

  • I
  • Thread starter Thread starter phantomvommand
  • Start date Start date
  • Tags Tags
    Energy Frame
AI Thread Summary
Energy conservation in a co-rotating or accelerating frame depends on the specifics of the frame's rotation and acceleration. To assess energy conservation, one must calculate the Lagrangian in terms of the generalized coordinates of the non-inertial frame. If the Lagrangian is not explicitly time-dependent, the associated Hamiltonian is conserved, which can be interpreted as the system's energy. In uniformly rotating frames, energy conservation can be expressed through a specific equation involving conservative forces. Overall, the ability to determine energy integrals hinges on the time dependence of the Lagrangian.
phantomvommand
Messages
287
Reaction score
39
Is energy always conserved in a co-rotating/accelerating frame?
 
Physics news on Phys.org
This is a bit too unspecific. How is your frame rotating? The way to check "energy conservation" is to calculate the Lagrangian of the system in terms of the generalized coordinates parametrizing the in this case non-inertial frame. If the Lagrangian is not explicitly time-dependent then the associated Hamiltonian is conserved and you could with some right of analogy call the Hamiltonian the energy of the system.
 
  • Informative
  • Like
Likes Dale and phantomvommand
As @vanhees71 said, there is insufficient detail to answer the question. You would have to describe accurately the rotation/acceleration in question. You could do that either with a coordinate transform between an inertial frame and yours, or with the metric or Lagrangian written directly in your frame's coordinates.
 
As I think I wrote in one of your previous threads, there is a simple form of energy conservation that applies to uniformly rotating, non-translationally-accelerating frames, viz: ##\dfrac{d}{dt} \left( T - \frac{1}{2}I \Omega^2 \right) - \displaystyle{\sum_a} \mathbf{F}_a \cdot \mathbf{v}_a = 0##. If all of the ##\mathbf{F}_a## are conservative then ##\displaystyle{\sum_a} \mathbf{F}_a \cdot \mathbf{v}_a## is a total time derivative and you have a conserved energy.

For other systems, whether or not you can find energy integrals depends on whether there is time dependence in the lagrangian i.e. write ##H = \dot{q}^i \dfrac{\partial L}{\partial \dot{q}^i} - L## then if ##\partial L/\partial t=0## you have$$\dfrac{dH}{dt} = \dot{q}^i \dfrac{d}{dt} \dfrac{\partial L}{\partial \dot{q}^i} + \dfrac{\partial L}{\partial \dot{q}^i} \ddot{q}^i - \dfrac{\partial L}{\partial q^i} \dot{q}^i - \dfrac{\partial L}{\partial \dot{q}^i} \ddot{q}^i$$which equals zero.
 
  • Like
Likes phantomvommand and vanhees71
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top