- #1
mente oscura
- 168
- 0
Hello.
I share with you , a demonstration, which authorship is mine.
I do not know, if it exists, similar other one.Section A) demonstration Fermat’s Last Theorem, for n = 4.
[tex]Let \ A, \ B, \ C \ \in{\mathbb{N}} / A, \ C \ = \ odd; \ B \ = \ even \ / A^2+B^2=C^2[/tex]
(*)We consider, as possible:
[tex]A=x^2[/tex]
[tex]B=y^2[/tex]
[tex]C=z^2[/tex]
So:
[tex]x^4+y^4=z^4[/tex]
According to the "traditional" formulas, to obtain "Pythagorean Triplet":
[tex]A=M^2-N^2[/tex]
[tex]B=2MN[/tex]
[tex]C=M^2+N^2[/tex]
Properties:
1ª)
[tex]C+B=M^2+N^2+2MN=(M+N)^2[/tex]
[tex]C+B=z^2+y^2=(M+N)^2[/tex]. Por (*)
2ª)
[tex]C-B=M^2+N^2-2MN=(M-N)^2[/tex]
[tex]C-B=z^2-y^2=(M-N)^2[/tex]. Por (*)
Conclusion: we get two "Pythagorean triplet", in which two of its elements are equal.
[tex]z^2+y^2=(M+N)^2[/tex]
[tex]z^2-y^2=(M-N)^2[/tex]
Consideration: If we show that it is not possible that two "Pythagorean triplet", have two common elements, we will have shown the Fermat Last Theorem, for n = 4.
Section B) demonstration of the impossibility of that, two "Pythagorean triplet", have two common elements:
[tex]Let \ a, \ b, \ c \ \in{\mathbb{N}} / a, \ c \ = \ odd; \ b \ = \ even \ / a^2+b^2=c^2[/tex].(1)
[tex]Sean \ d, \ b, \ c \ \in{\mathbb{N}} / d, \ c \ = \ odd; \ b \ = \ even \ / c^2+b^2=d^2[/tex].(2)
Considerations:
1º) a, b, c, d, co-prime, so are primitive Pythagorean Triplets.
2º) “c” It is the odd small, which meets (1) y (2)Option 1º)
[tex]a^2+b^2=c^2[/tex]
[tex]a=m^2-n^2[/tex]
[tex]b=2mn[/tex]
[tex]c=m^2+n^2[/tex]Option 2º)
[tex]c^2+b^2=d^2[/tex]
[tex]c=u^2-v^2[/tex]
[tex]b=2uv[/tex]
[tex]d=u^2+v^2[/tex]
Course: "m" and "n" co-prime, same as "u" and "v".
By Option 1º) y Option 2º):
[tex]b=2mn=2uv[/tex]
I'm going to break down "b" in four co-prime factors: "e", "f", "g" and "h", such that:
[tex]b=2efgh[/tex]
And, we assign, for example:
[tex]m=ef[/tex]
[tex]n=gh[/tex]
[tex]u=eg[/tex]
[tex]v=fh[/tex]
Being: e=mcd(m,u), f=mcd(m,v), g=mcd(n,u), h=mcd(n,v)
Note: “mcd”= greatest common divisor.
Now, using the other element common to the Pythagorean Triplets: "c"
[tex]c=m^2+n^2=e^2f^2+g^2h^2[/tex]
[tex]c=u^2-v^2=e^2g^2-f^2h^2[/tex]
Therefore:
[tex]e^2f^2+g^2h^2= e^2g^2-f^2h^2[/tex]
[tex]g^2h^2+f^2h^2= e^2g^2-e^2f^2[/tex]
[tex]h^2(g^2+f^2)=e^2(g^2-f^2)[/tex]
To be "h" and "e" co-prime, and, also, [tex]g^2+f^2[/tex] y [tex]g^2-f^2[/tex], (note that "g" or "f" should be "evenr"), it follows that:
[tex]h^2=g^2-f^2[/tex]
[tex]e^2=g^2+f^2[/tex]
Thus, we have other two Pythagorean Triplets with two common elements, but:
[tex]c \ > \ g[/tex]
Since:
[tex]c=m^2+n^2>n^2=g^2h^2>g^2>g[/tex]
It is not possible, since we had considered "c", as the odd minor who met the conditions (1) and (2).
Whereupon, demonstrated the Section B)" and, therefore, also the "Section A)", concluding the impossibility of:
[tex]x^4+y^4=z^4[/tex]
Regards.
I share with you , a demonstration, which authorship is mine.
I do not know, if it exists, similar other one.Section A) demonstration Fermat’s Last Theorem, for n = 4.
[tex]Let \ A, \ B, \ C \ \in{\mathbb{N}} / A, \ C \ = \ odd; \ B \ = \ even \ / A^2+B^2=C^2[/tex]
(*)We consider, as possible:
[tex]A=x^2[/tex]
[tex]B=y^2[/tex]
[tex]C=z^2[/tex]
So:
[tex]x^4+y^4=z^4[/tex]
According to the "traditional" formulas, to obtain "Pythagorean Triplet":
[tex]A=M^2-N^2[/tex]
[tex]B=2MN[/tex]
[tex]C=M^2+N^2[/tex]
Properties:
1ª)
[tex]C+B=M^2+N^2+2MN=(M+N)^2[/tex]
[tex]C+B=z^2+y^2=(M+N)^2[/tex]. Por (*)
2ª)
[tex]C-B=M^2+N^2-2MN=(M-N)^2[/tex]
[tex]C-B=z^2-y^2=(M-N)^2[/tex]. Por (*)
Conclusion: we get two "Pythagorean triplet", in which two of its elements are equal.
[tex]z^2+y^2=(M+N)^2[/tex]
[tex]z^2-y^2=(M-N)^2[/tex]
Consideration: If we show that it is not possible that two "Pythagorean triplet", have two common elements, we will have shown the Fermat Last Theorem, for n = 4.
Section B) demonstration of the impossibility of that, two "Pythagorean triplet", have two common elements:
[tex]Let \ a, \ b, \ c \ \in{\mathbb{N}} / a, \ c \ = \ odd; \ b \ = \ even \ / a^2+b^2=c^2[/tex].(1)
[tex]Sean \ d, \ b, \ c \ \in{\mathbb{N}} / d, \ c \ = \ odd; \ b \ = \ even \ / c^2+b^2=d^2[/tex].(2)
Considerations:
1º) a, b, c, d, co-prime, so are primitive Pythagorean Triplets.
2º) “c” It is the odd small, which meets (1) y (2)Option 1º)
[tex]a^2+b^2=c^2[/tex]
[tex]a=m^2-n^2[/tex]
[tex]b=2mn[/tex]
[tex]c=m^2+n^2[/tex]Option 2º)
[tex]c^2+b^2=d^2[/tex]
[tex]c=u^2-v^2[/tex]
[tex]b=2uv[/tex]
[tex]d=u^2+v^2[/tex]
Course: "m" and "n" co-prime, same as "u" and "v".
By Option 1º) y Option 2º):
[tex]b=2mn=2uv[/tex]
I'm going to break down "b" in four co-prime factors: "e", "f", "g" and "h", such that:
[tex]b=2efgh[/tex]
And, we assign, for example:
[tex]m=ef[/tex]
[tex]n=gh[/tex]
[tex]u=eg[/tex]
[tex]v=fh[/tex]
Being: e=mcd(m,u), f=mcd(m,v), g=mcd(n,u), h=mcd(n,v)
Note: “mcd”= greatest common divisor.
Now, using the other element common to the Pythagorean Triplets: "c"
[tex]c=m^2+n^2=e^2f^2+g^2h^2[/tex]
[tex]c=u^2-v^2=e^2g^2-f^2h^2[/tex]
Therefore:
[tex]e^2f^2+g^2h^2= e^2g^2-f^2h^2[/tex]
[tex]g^2h^2+f^2h^2= e^2g^2-e^2f^2[/tex]
[tex]h^2(g^2+f^2)=e^2(g^2-f^2)[/tex]
To be "h" and "e" co-prime, and, also, [tex]g^2+f^2[/tex] y [tex]g^2-f^2[/tex], (note that "g" or "f" should be "evenr"), it follows that:
[tex]h^2=g^2-f^2[/tex]
[tex]e^2=g^2+f^2[/tex]
Thus, we have other two Pythagorean Triplets with two common elements, but:
[tex]c \ > \ g[/tex]
Since:
[tex]c=m^2+n^2>n^2=g^2h^2>g^2>g[/tex]
It is not possible, since we had considered "c", as the odd minor who met the conditions (1) and (2).
Whereupon, demonstrated the Section B)" and, therefore, also the "Section A)", concluding the impossibility of:
[tex]x^4+y^4=z^4[/tex]
Regards.