Is H a Subgroup of N if |H| and |G:N| are Relatively Prime?

  • Thread starter Thread starter symbol0
  • Start date Start date
  • Tags Tags
    Subgroup
symbol0
Messages
77
Reaction score
0
Let G be a finite group, let H be a subgroup of G and let N be a normal subgroup of G. Show that if |H| and |G:N| are relatively prime then H is a subgroup of N.

I have tried using the fact that since N is normal, HN is a subgroup of G.
Suposing that H is not contained in N, I tried finding a common factor for |H| and |G:N|.
Numbers that divide |H| are |HnN|, |H:HnN| and |H|.
Numbers that divide |G:N| are |G:HN| and |HN:N|.
I'm stuck.

I would appreciate any suggestions.
Thanks
 
Physics news on Phys.org
Take a h\in H. You want to show that h\in N. Now, what can you say about h+N\in G/N?? What is its order??
 
The order of hN in G/N is the smallest integer k such that h^k = n for some n in N.
We know that k divides |G/N|. I don't know if k divides |H|. We know that h^k is in the intersection of H and N.
 
What I meant was: let k be the order of h. Then we know that h^k=e. And also (hN)^k=N. So the order of hN divides k. What can you conclude?
 
Thank you micromass,
I got it.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top