MHB Is it possible to prove the inequality without using induction?

AI Thread Summary
The discussion revolves around proving the inequality $\dfrac{1}{2} \cdot \dfrac{3}{4} \cdot \dfrac{5}{6} \cdots \dfrac{1997}{1998} >\dfrac{1}{1999}$ without using induction. Participants express admiration for the elegant solution provided by a user named Ackbach. The challenge lies in finding a non-inductive approach to demonstrate the inequality's validity. The conversation highlights the complexity of the problem and the satisfaction of discovering a solution. Overall, the thread showcases a successful mathematical exploration of inequalities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that $\dfrac{1}{2} \cdot \dfrac{3}{4} \cdot \dfrac{5}{6} \cdots \dfrac{1997}{1998} >\dfrac{1}{1999}$, where the use of induction method is not allowed.
 
Mathematics news on Phys.org
This is equivalent to showing
$$1 \cdot 3 \cdot 5 \cdot \dots \cdot 1999 > 2 \cdot 4 \cdot 6 \cdot \dots \cdot 1998.$$
But this is so, since $3>2$, and $5>4$, etc. The left-hand product has one more term (the number $1$) in it than the right-hand term. Therefore, the left-hand product is greater.
 
Wow...the moment I saw this problem, I naturally perceived as a hard to prove sort of inequality problem but you cracked it in such an elegant method! Well done, Ackbach, and thanks for participating! :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top