MHB Is Tan(cos2x) equal to tan(2 cos^-1(x))?

  • Thread starter Thread starter Elissa89
  • Start date Start date
AI Thread Summary
The discussion clarifies that 2 cos^-1(x) is not equal to cos(2x), emphasizing that cos^-1(x) represents an angle θ where cos(θ) = x. To find tan(2 cos^-1(x)), the double angle formula for tangent is applied, along with the identity for tan(θ) derived from sin(θ) and cos(θ). Participants suggest substituting tan(θ) with its expression in terms of x and simplifying the resulting equation. The final expression for tan(2 cos^-1(x)) is derived as 2x√(1-x^2)/(2x^2-1). Understanding the distinction between cos^-1(x) and cos(2x) is crucial for solving the problem correctly.
Elissa89
Messages
52
Reaction score
0
tan(2 cos^-1(x))

I'm pretty sure 2 cos^-1(x) is the same as cos2x, the doubles formula, but from there I'm completely lost.
 
Mathematics news on Phys.org
Elissa89 said:
tan(2 cos^-1(x))

I'm pretty sure 2 cos^-1(x) is the same as cos2x, the doubles formula, but from there I'm completely lost.

$2\cos^{-1}(x) \ne \cos(2x)$

$\cos^{-1}(x)$ is an angle (call it $\theta$) such $\cos{\theta} = x$

$\tan(2\theta) = \dfrac{2\tan{\theta}}{1-\tan^2{\theta}}$

$\cos{\theta} = x \implies \sin{\theta} = \sqrt{1-x^2} \implies \tan{\theta} = \dfrac{\sqrt{1-x^2}}{x}$

substitute the above expression for $\tan{\theta}$ in the double angle formula for tangent and simplify the algebra.
 
Last edited by a moderator:
skeeter said:
$2\cos^{-1}(x) \ne \cos(2x)$

$\cos^{-1}(x)$ is an angle (call it $\theta$) such $\cos{\theta} = x$

$\tan(2\theta) = \dfrac{2\tan{\theta}}{1-\tan^2{\theta}}$

$\cos{\theta} = x \implies \sin{\theta} = \sqrt{1-x^2} \implies \tan{\theta} = \dfrac{\sqrt{1-x^2}}{x}$

substitute the above expression for $\tan{\theta}$ in the double angle formula for tangent and simplify the algebra.

I'm not sure I understand
 
Elissa89 said:
I'm not sure I understand
What, specifically, don't you understand? We can help you better if we know this.

-Dan
 
We are having to guess at what the OP is supposed to accomplish. Is it calculating a value for the expression given a value for x or, as we are guessing, is it to find a purely algebraic expression for the given trigonometric expression; or even something else.
 
It appears that you do not understand what "cos^{-1}(x)" means! It is the inverse function to cos(x) (limited to x= 0 to \pi so that it is one-to-one). cos^{-1}(1)= 0 because cos(0)= 1. cos^{-1}(0)= \pi/2 because cos(\pi/2)= 0, etc.

The basic fact you need to use here is that cos(cos^{-1}(x))= x so you should try to change that "tan(2..)" to "cos(..)". I would start by using the identity tan(2x)= \frac{2 tan(x)}{1- tan^2(x)}. Now use the fact that tan(x)= \frac{sin(x)}{cos(x)} and then that sin(x)= \sqrt{1- cos^2(x)}: tan(2x)= \frac{2 tan(x)}{1- tan^2(x)}= \frac{2\frac{\sqrt{1- cos^2(x)}}{cos(x)}}{1- \frac{1- cos^2(x)}{cos^2(x)}}.

Replacing each "x" with cos^{-1}(x) changes each "cos(x)" to "x" so that
tan(2cos^{-1}(x))= \frac{2\frac{\sqrt{1- x^2}}{x}}{1- \frac{1- x^2}{x^2}}= \frac{2x\sqrt{1- x^2}}{2x^2- 1}.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top