- #1
Adrian59
- 210
- 29
- TL;DR Summary
- The likelihood for dark matter appears to be lessening in direct detection and in its utility in explaining astronomical anomalies.
The likelihood for dark matter appears to be lessening in direct detection and in its utility in explaining astronomical anomalies. With regard to the former, a trio of recent dark matter detection experiments (LUX 2016, PandaX II 2017 and Xenon1t 2018) have all failed to show any non-baryonic matter. The remaining parameter space is almost obliterated. Further attempts at CERN have, also, not shown any new physics. As to the latter, work by J. Jalocha, F. Cooperstock, and A. Deur all provide competent alternatives to explain galaxy rotation curves without dark matter or modifying gravity.
Yet, despite this the Planck mission confidently quote Ωc h^2 as 0.12 ± 0.001!
The numerous Planck publications is truly a master class in hiding the significant details in a deluge of information. One clear quotation needed to remove the obscuration for me is a clear unambiguous expression for the two point function Cl.
Yet, despite this the Planck mission confidently quote Ωc h^2 as 0.12 ± 0.001!
The numerous Planck publications is truly a master class in hiding the significant details in a deluge of information. One clear quotation needed to remove the obscuration for me is a clear unambiguous expression for the two point function Cl.