MHB Is the Equation $ |tanx + cotx| = |tanx| + |cotx| $ True for Any Value of $x$?

  • Thread starter Thread starter DaalChawal
  • Start date Start date
AI Thread Summary
The equation |tanx + cotx| = |tanx| + |cotx| is true for any value of x except at points where tanx or cotx are undefined, specifically at nπ and (2n+1)π/2. Since tanx and cotx share the same sign for all valid x, the equation holds true in those ranges. The discussion references the Triangle Inequality, which states that |a + b| is less than or equal to |a| + |b|, but in this case, equality is achieved when both terms are non-zero. Therefore, the equation is valid as long as x is not at the points where tanx or cotx are undefined. This confirms the equation's validity under specified conditions.
DaalChawal
Messages
85
Reaction score
0
Q. Is $ |tanx + cotx| = |tanx| + |cotx| $ true for any $x?$ If it is true, then find the values of $x$.

My Working -->

Since $tanx$ and $cotx$ always have the same sign, so this holds true for any value of $x$.
 
Mathematics news on Phys.org
Okay I think this should hold true for any $x$ except $n \pi$ , $\frac{(2n+1) \pi }{2}$
Am I correct?
 
In general, $\displaystyle \begin{align*} \left| a + b \right| \not\equiv \left| a \right| + \left| b \right| \end{align*}$, rather $\displaystyle \begin{align*} \left| a + b \right| \leq \left| a \right| + \left| b \right| \end{align*}$. That's called the Triangle Inequality.
 
DaalChawal said:
Q. Is $ |tanx + cotx| = |tanx| + |cotx| $ true for any $x?$ If it is true, then find the values of $x$.

My Working -->

Since $tanx$ and $cotx$ always have the same sign, so this holds true for any value of $x$.
You have to be a bit more careful than this, as Prove It says but you essentially have [math]\left | y + \dfrac{1}{y} \right | = |y| + \left | \dfrac{1}{y} \right |[/math], which is true for [math]y \neq 0[/math].

So, yes.

-Dan
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top