- #1
dirk_mec1
- 761
- 13
Homework Statement
http://img444.imageshack.us/img444/7641/20240456gw8.png
Homework Equations
http://img14.imageshack.us/img14/5879/63445047rj2.png
Note that the rightside of the rod is insulated.
The Attempt at a Solution
I get this model:
[tex] \frac{ \partial{u} }{ \partial{t} } = \kappa \frac{ \partial{ ^2 u} }{ \partial{x^2} } +s [/tex]
[tex]u(0,t)=u_0[/tex]
[tex]\frac{ \partial{u}} { \partial{x} } = 0[/tex]In steady state this gives: [tex]u(x) = \frac{- s}{ \kappa} \frac{1}{2}x^2 + \frac{s}{ \kappa } L x + u_0 [/tex]
But if I calcute than the asked u' at x=0:
I get:
[tex]\frac{du}{dx} = \frac{s}{ \kappa} L [/tex]
Is this correct?
Last edited by a moderator: