- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $K/F$ be a finite Galois extension and let $G= \operatorname{Gal}(K/F)$.
Let $K/F$ be a finite Galois extension and let $G= \operatorname{Gal}(K/F)$.
- For each $\sigma\in G$ we define $V_{\sigma}=\{\sigma (b)-b:b\in K\}$. Show that $V_{\sigma}$ is $F$-subspace of $\ker \operatorname{Tr}_{K/F}$.
- Show that $K/\mathcal{F} (\langle \sigma \rangle) \cong V_{\sigma}$ (isomorphic as $F$-linear spaces).
- Show that $\ker \operatorname{Tr}_{K/F}=V_{\sigma} \ \iff \ G=\langle \sigma \rangle$.
- $V_{\sigma}$ must contain $0$ :
The Galois group acts transitively on the roots of an irreducible polynomial. We have that $\sigma^i(b)=b$, so $\sigma^i(b)-b=b-b=0$, so $0\in V_{\sigma}$.
$$$$
- $V_{\sigma}$ must be closed under addition:
$\left (\sigma(a)-a\right )+\left (\sigma(b)-b\right )=[\sigma(a)+\sigma(b)]-[a+b]=\sigma(a+b)-(a+b)\in V_{\sigma}$
$$$$
- $V_{\sigma}$ must be closed under scalar multiplication:
Let $\lambda\in \ker \operatorname{Tr}_{K/F}$ and $\sigma(b)-b \in V_{\sigma}$, we have that $\lambda \cdot \left (\sigma(b)-b\right )=\lambda \sigma(b)-\lambda b=\sigma(\lambda b)-(\lambda b)\in V_{\sigma}$.
Do we conclude in that way that $V_{\sigma}$ is $F$-subspace of $\ker \operatorname{Tr}_{K/F}$ ? (Wondering)
$$$$
- $V_{\sigma}$ must contain $0$ :
- I have shown that $K/\mathcal{F} (\langle \sigma \rangle)$ is isomorphic to $V_{\sigma}$. $\checkmark$
$$$$
- Do we have to show at the one direction that $\ker Tr_{K/F}$ and $V_{\sigma} $ have the same dimension? (Wondering)