Is the Math Behind Quantum Mechanics Misrepresented?

AI Thread Summary
The discussion highlights concerns regarding the mathematical rigor in quantum mechanics, particularly in Dirac's introduction of Bra and Ket notation. Critics argue that Dirac's assertion about the existence of corresponding bras for each ket is misleading, especially in infinite-dimensional spaces. The conversation clarifies that transposing vectors requires an inner product, which is not always applicable in abstract vector spaces. Participants emphasize that while physicists may overlook mathematical precision, the foundational concepts in quantum mechanics should be scrutinized for accuracy. Overall, the thread underscores the importance of understanding the mathematical framework underlying quantum mechanics.
plmokn2
Messages
31
Reaction score
0
Not really a problem but was reading a review of a book on amazon and came across this:

.) It is mathematically sloppy. Dirac introduces the Bra and Ket notation (for which he is responsible, by the way) without mentioning the dual space, and sometimes even reasons wrongly; i.e., he writes "let us postulate that for each ket, there exists a corresponding bra" - this is not a postulate. This is ALWAYS true for finite dimensional vector spaces, and NEVER true for infinite dimensional vector spaces, and can be proven mathematically. In short, there is little attention given to the mathematics behind QM.

Is the bit in bold right? Isn't <psi| normally infinite dimensions or am I confused?

Thanks
 
Physics news on Phys.org
Bra-ket notation doesn't make sense for an abstract vector space -- you can't transpose a vector unless you've chosen an inner product. Once you've done so, every ket can be transposed to a bra. But in general, some bras cannot be transposed into a ket.

For inner-product spaces, every bra can be transposed if and only if the vector space is finite-dimensional

However, we consider a Hilbert space not as an inner-product space, but as a topological inner-product space -- and so the space of bras consists only of continuous linear functionals. By the Riesz representation theorem, every bra can be transposed into a ket.
 
Last edited:
Actually even the bit about it always possible in a finite dimensional vector space is off -- as stated by Hurkyl, you need an inner product. It is true that we sloppy physicists aren't always so hot on mathematical accuracy -- but let's just say that Dirac's words have been read with scrutiny for a while...
 
Thanks
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top