- #1
CalTech>MIT
- 7
- 0
Homework Statement
X={x | xn E R | 0[tex]\leq[/tex] x [tex]\leq[/tex] 1}
d(x,y)= [tex]\Sigma[/tex]n=1infinity |xn - yn|*2-j
Show:
1. (X,d) is a metric space
2. (X,d) is separable
3. (X,d) is compact
Homework Equations
n/a
The Attempt at a Solution
Here we go.
number 1.
Show that d(x,y)=d(y,x):
[tex]\Sigma[/tex]n=1infinity |xn - yn|*2-j = [tex]\Sigma[/tex]n=1infinity |yn - xn|*2-j
Show that d(x,x)=0:
[tex]\Sigma[/tex]n=1infinity |xn - xn|*2-j = [tex]\Sigma[/tex]n=1infinity 0*2-j = 0
Show d(x,y)[tex]\leq[/tex]d(x,z)+d(z,y):
[tex]\Sigma[/tex]n=1infinity |xn - zn|*2-j + [tex]\Sigma[/tex]n=1infinity |zn - yn|*2-j