Is there a paradox involving the Dirac equation and commutation with time?

ginda770
Messages
9
Reaction score
0
I was hoping someone could help me with a seeming paradox involving the Dirac equation. I have taken a non-relativistic QM course, but am new to relativistic theory.

The Dirac equation is (following Shankar)

i\frac{\partial}{\partial t}\psi = H\psi

where

H = \vec{\alpha}\cdot \vec{p} + \beta m

(\psi is a four component wavefunction and the alphas and beta are 4 by 4 matrices with constant entries)

It seems to me that any alpha matrix (or almost any other 4 by 4 matrix made up of constants) commutes with \partial/\partial t, but not with the hamiltonian H. How can this be true? If \left[\vec{\alpha},H\right] \neq 0 and H = i \left(\partial/\partial t\right) how can \left[\vec{\alpha},\partial/\partial t\right]=0 ? What am I missing?
 
Last edited:
Physics news on Phys.org
Never mind, I figured it out. Stupid question. :-p
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top