Is There a Rational Multiple for the Product of Sines from 1 to 90 Degrees?

  • MHB
  • Thread starter anemone
  • Start date
In summary, the purpose of proving the rationality of a trigonometric product is to show that it can be expressed as a ratio of two integers. This is important for simplifying equations and functions. Techniques used for this proof include using trigonometric identities, converting to exponential forms, and properties of rational numbers. Proving rationality allows for simplification and a fundamental understanding of numbers in math. Not all trigonometric products can be proven to be rational, but many can be using these techniques.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Here is this week's POTW:

-----

Show that there is a rational number $k$ such that $\sin 1^\circ \sin 2^\circ \cdots \sin 89^\circ \sin 90^\circ =k\sqrt{10}$.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
  • #2
Congratulations to the following members for their correct solution!(Cool)

1. Olinguito
2. Opalg

Solution from Olinguito:
Observe that
$$2\sin x^\circ\sin(60-x)^\circ$$
$=\ \cos(2x-60)^\circ-\cos60^\circ$

$=\ \cos(2x-60)^\circ-\dfrac12$

and so
$$4\sin x^\circ\sin(60-x)^\circ\sin(60+x)^\circ$$
$=\ 2\left[\cos(2x-60)^\circ-\dfrac12\right]\sin(60+x)^\circ$

$=\ 2\cos(2x-60)^\circ\sin(60+x)^\circ-\sin(60+x)^\circ$

$=\ \sin(3x)^\circ+\sin(120-x)^\circ-\sin(60+x)^\circ$

$=\ \sin(3x)^\circ+\sin(180-[120-x])^\circ-\sin(60+x)^\circ$

i.e.
$$\boxed{\sin x^\circ\sin(60-x)^\circ\sin(60+x)^\circ\ =\ \frac{\sin(3x)^\circ}4}.$$

So:
$$\sin1^\circ\sin2^\circ\cdots\sin90^\circ$$
$=\ (\sin1^\circ\sin59^\circ\sin61^\circ)(\sin2^\circ\sin58^\circ\sin62^\circ)\cdots(\sin29^\circ\sin31^\circ\sin89^\circ)\sin30^\circ\sin60^\circ\sin90^\circ$

$=\ \dfrac{\sin3^\circ}4\cdot\dfrac{\sin6^\circ}4\cdots\dfrac{\sin87^\circ}4\cdot\dfrac12\cdot\dfrac{\sqrt3}2\cdot1$

$=\ \dfrac{\sqrt3}{4^{30}}\sin3^\circ\sin6^\circ\cdots\sin87^\circ$

$=\ \dfrac{\sqrt3}{4^{30}}(\sin3^\circ\sin57^\circ\sin63^\circ)(\sin6^\circ\sin54^\circ\sin66^\circ)\cdots(\sin27^\circ\sin33^\circ\sin87^\circ)\sin30^\circ\sin60^\circ$

$=\ \dfrac{\sqrt3}{4^{30}}\cdot\dfrac{\sin9^\circ}4\cdot\dfrac{\sin18^\circ}4\cdots\dfrac{\sin81^\circ}4\cdot\dfrac12\cdot\dfrac{\sqrt3}2$

$=\ \dfrac3{4^{40}}\sin9^\circ\sin18^\circ\cdots\sin81^\circ$

$=\ \dfrac3{4^{40}}(\sin9^\circ\sin81^\circ)(\sin18^\circ\sin72^\circ)(\sin27^\circ\sin63^\circ)(\sin36^\circ\sin54^\circ)\sin45^\circ$

$=\ \dfrac3{4^{40}}(\sin9^\circ\cos9^\circ)(\sin18^\circ\cos18^\circ)(\sin27^\circ\cos27^\circ)(\sin36^\circ\cos36^\circ)\cdot\dfrac{\sqrt2}2$

$=\ \dfrac{3\sqrt2}{2^{81}}\cdot\dfrac{\sin18^\circ}2\dfrac{\sin36^\circ}2\cdot\dfrac{\sin54^\circ}2\cdot\dfrac{\sin72^\circ}2$

$=\ \dfrac{3\sqrt2}{2^{85}}\sin18^\circ\cos18^\circ\sin36\cos36^\circ$

$=\ \dfrac{3\sqrt2}{2^{87}}\sin36^\circ\sin72^\circ$

$=\ \dfrac{3\sqrt2}{2^{86}}\sin^236^\circ\cos36^\circ$

$=\ \dfrac{3\sqrt2}{2^{86}}(\cos36^\circ-\cos^336^\circ).$

It remains to work out $\cos36^\circ$. We have
$$\sin36^\circ\ =\ \cos54^\circ$$
$\implies\ 2\sin18^\circ\cos18^\circ\ =\ 4\cos^318^\circ-3\cos18^\circ$

$\implies\ 2\sin18^\circ\ =\ 4\cos^218^\circ-3\ =\ 4-4\sin^218^\circ-3\ =\ 1-4\sin^218^\circ$

$\implies\ 4\sin^218^\circ+2\sin18^\circ-1\ =\ 0$

$\implies\ \sin18^\circ\ (>0) =\ \dfrac{-2+\sqrt{20}}8\ =\ \dfrac{-1+\sqrt5}4.$

So $\cos36^\circ\ =\ 1-2\sin^218^\circ\ =\ \dfrac{1+\sqrt5}4$

$\implies\ \cos^336^\circ\ =\ \dfrac{2+\sqrt5}8$

$\implies \cos36^\circ-\cos^336^\circ\ =\ \dfrac{\sqrt5}8$.

Hence
$$\sin1^\circ\sin2^\circ\cdots\sin90^\circ$$
$=\ \dfrac{3\sqrt2}{2^{86}}\cdot\dfrac{\sqrt5}8\ =\ \boxed{k\sqrt{10}\ \text{where}\ k=\dfrac3{2^{89}}\in\mathbb Q}$.

Alternate solution from Opalg:
This proof uses Chebyshev polynomials. By equation (14) in Multiple-Angle Formulas -- from Wolfram MathWorld, $\sin(180\theta) = -\cos\theta\, U_{179}(\sin \theta)$, where $U_{179}(x)$ is a Chebyshev polynomial of the second kind. And by equation (17) in Chebyshev Polynomial of the Second Kind -- from Wolfram MathWorld, $$U_{179}(x) = \sum_0^{89}(-1)^n{179-n\choose n}(2x)^{179-2n}.$$ It follows that $$\sin(180\theta) = -\cos\theta \sum_0^{89}(-1)^n{179-n\choose n}(2\sin\theta)^{179-2n}. \qquad(*)$$ For every integer $k$, $\sin(180k^\circ) = 0$. If $-89\leqslant k \leqslant 89$ it is also true that $\cos k^\circ \ne0$. It follows from (*) that for $-89\leqslant k \leqslant 89$, $\sin k^\circ$ satisfies the equation $$ \sum_0^{89}(-1)^n{179-n\choose n}(2x)^{179-2n} = 0. \qquad(**)$$ But that is an equation of degree 179, and the 179 solutions $\sin k^\circ \ (-89\leqslant k \leqslant 89)$ are all distinct. So they comprise all the solutions. One of the solutions is $x=0$ (corresponding to $k=0$), and the others are $\pm\sin k^\circ \ (1\leqslant k \leqslant 89)$ (because $\sin(-\theta) = -\sin\theta$). Divide (**) by $x$ to eliminate the solution $x=0$, and it follows that the solutions of $$ \sum_0^{89}(-1)^n{179-n\choose n}2^{179-2n}x^{178-2n} = 0$$ are $\pm\sin k^\circ \ (1\leqslant k \leqslant 89)$. Write the equation as $$ 2^{179}x^{178} - \ldots - 2{90\choose 89} = 0, \\ 2^{178}x^{178} - \ldots - 90 = 0, $$ to see that the product of the roots is $$(\sin 1^\circ \sin 2^\circ \cdots \sin 89^\circ)^2 = \dfrac{90}{2^{178}}.$$ Now take the square root and toss in the fact that $\sin90^\circ = 1$, to get $$\sin 1^\circ \sin 2^\circ \cdots \sin 89^\circ \sin 90^\circ = \frac3{2^{89}}\sqrt{10}.$$
 

FAQ: Is There a Rational Multiple for the Product of Sines from 1 to 90 Degrees?

What is the purpose of proving the rationality of a trigonometric product?

The purpose of proving the rationality of a trigonometric product is to demonstrate that the product can be expressed as a ratio of two integers, which is known as a rational number. This proof is important in mathematics because it allows for simplification and manipulation of trigonometric expressions, making them easier to work with.

How is the rationality of a trigonometric product proven?

The rationality of a trigonometric product is proven by using various trigonometric identities and properties, such as the Pythagorean identities and the double angle formulas. These identities allow for the expression to be manipulated and simplified until it can be written as a ratio of two integers.

What are some real-world applications of proving the rationality of a trigonometric product?

Proving the rationality of a trigonometric product has many real-world applications, particularly in engineering and physics. For example, it can be used to simplify complex electrical circuits or to calculate the trajectory of a projectile in physics.

Can the rationality of a trigonometric product be proven for all possible values?

Yes, the rationality of a trigonometric product can be proven for all possible values. This is because trigonometric functions are continuous and have well-defined values for all real numbers. Therefore, the proof holds true for any value of the product.

Are there any limitations to proving the rationality of a trigonometric product?

One limitation to proving the rationality of a trigonometric product is that it can become very complex and time-consuming for more complicated expressions. Additionally, some trigonometric products may not have rational solutions, making it impossible to prove their rationality.

Back
Top