MHB Is There an Easier Method to Prove $n^2>n$ for Negative Integers?

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
The discussion centers on proving the inequality \( n^2 > n \) for negative integers. Several examples demonstrate that the inequality holds true for specific negative integers like -1, -2, and -3, confirming the pattern. The proof attempts to establish that \( n^2 - n > 0 \) by transforming it into \( n(n-1) > 0 \), but the reasoning becomes unclear when addressing the conditions for negative integers. Participants suggest that the proof could be simplified by recognizing that for negative \( n \), \( n^2 \) is always positive and greater than \( n \). The conversation concludes with a call for clearer methods to solidify the proof.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

Directions: Decide whether the statement is a theorem. If it is a theorem, prove it. if not, give a counterexample.

$$n^2>n$$ for each negative integer n

Examples might work for this inequality

$$n^2-n>0$$

Let n=-1. Then
$$(-1)^2-(-1)>0$$
$$1+1>0$$
$$2>0$$

Let n=-2. Then
$$(-2)^2-(-2)>0$$
$$4+2>0$$
$$6>0$$

Let n=-3. Then
$$(-3)^2-(-3)>0$$
$$9+3>0$$
$$12>0$$

I figure out the pattern of the inequality. So I need to prove it for all cases.

PROOF: Let n be the negative integers. Then,
$$n^2-n>0$$
$$n(n-1)>0$$
$$n>0 \land n>1$$

Here is where I am stuck with my reasoning. Is there better way to prove it?

Thanks
Cbarker1
 
Mathematics news on Phys.org
$ n^2 \ge \sqrt{ n^2 } = |n| > n $ if $ n $ is negative.
 
greg1313 said:
$ n^2 \ge \sqrt{ n^2 } = |n| > n $ if $ n $ is negative.

Yes, it is true.

But I think there is an easier method to prove this, right?
So, I will rewrite the statement into a condition statement.

If n is a neg. integer, then $n^2>n$.

Work for this statement and I am stuck in this part upcoming:

Proof: Suppose n is negative integer. Then, $n>0$. Then $n-1>0$. So $n-1>n>0$.

What to do next in this proof?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
1
Views
2K
Replies
1
Views
1K
3
Replies
105
Views
6K
Replies
4
Views
1K
Replies
7
Views
2K
Back
Top