- #36
- 6,724
- 431
nutgeb said:FRW coordinates make the 'arbitrary' but rather unique choice of calibrating their time and distance axes to these invariant quantities, for all frames of reference which are comoving in accordance with Hubble's Law.
Sure, I'll grant you that the FRW coordinates are particularly useful. However, that doesn't mean that it's valid to interpret coordinate velocities as having a definite physical meaning. They also aren't invariant, for any useful or standard definition of "invariant."
nutgeb said:Velocity is well defined as long as one sticks to a single coordinate system. In FRW proper radial distance coordinates, there is no ambiguity about how to calculate relative velocities of distant points.
I don't think this is correct. For example, consider a closed universe, where space has the topology of a sphere. We have two galaxies, separated by 1/3 of the circumference along a particular line L. If you take the other 2/3 of the circumference, you get a different line L', which has twice the length (measured in FRW coordinates). The rate at which L' expands (expressed in FRW coordinates) is twice as great as the rate at which L expands, so you can say that either one of these is a possible relative velocity of these two galaxies. So even if you stick to FRW coordinates, there *is* an ambiguity about how to calculate relative velocities of distant points.
Here's another way of seeing that what you're talking about doesn't work. If it did work, then I could measure the velocities of all the galaxies in a closed universe relative to myself, and then I could determine things like the total mass-energy of the universe, or the total angular momentum of the universe. MTW section 19.4 has a good discussion of why this is impossible.
Last edited: