Is this integral correct? (expanding the Bessel function into power series )

  • Thread starter Thread starter Rfael
  • Start date Start date
Rfael
Messages
10
Reaction score
1
Homework Statement
integral equality: is this integral correct ?
Relevant Equations
$$ exp(-x)= \int_{0}^{\infty}J_0 (\sqrt{xt})exp(-t) $$
i have expanded the bessel function into power series and integration term by term
 
Physics news on Phys.org
Rfael said:
Homework Statement: integral equality: is this integral correct ?
Almost! According to Mathematica your result is missing a factor of 4:

1750020161500.webp
 
thanks how about if i put ##J_0 ( 2\sqrt{xt})## instead my original bessel function ?
 
Rfael said:
thanks how about if i put ##J_0 ( 2\sqrt{xt})## instead my original bessel function ?
Yes, that removes the factor of 4 from the answer, as is evident by making a change-of-variables in the first integral above:
1750020896404.webp
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top