Is This Trig Substitution Correct for This Integral?

In summary, the integral $\displaystyle \int_{}^{} \frac{1}{x\sqrt{x^2 + 16}} \,dx$ can be simplified by using the substitution $x = 4 tan\theta$ and then integrating with respect to $\theta$. This leads to the result $\frac{1}{4} ln|\frac{x}{\sqrt{x^2 + 16}}| + C$. However, an alternative approach is to use partial fractions to evaluate the integral directly, which results in the answer $\frac{1}{8} \ln{ \left| \frac{\sqrt{x^2 + 16} - 4}{\sqrt{x^2 + 16} + 4
  • #1
tmt1
234
0
$$\int_{}^{} \frac{1}{x\sqrt{x^2 + 16}} \,dx$$

I can set $x = 4 tan\theta$. Thus $dx = 4 sec^2 \theta d\theta$

So, plug this into the first equation:

$$\int_{}^{} \frac{4 sec^2 \theta }{4 tan\theta \sqrt{16 tan^2\theta + 16}} \,d\theta$$

Then,

$$\int_{}^{} \frac{ sec^2 \theta }{4 tan\theta sec\theta} \,d\theta$$

then:

$$\frac{1}{4}\int_{}^{} \frac{ sec \theta }{ tan\theta} \,d\theta$$

I can simplify this to:

$$\frac{1}{4}\int_{}^{} \frac{ 1}{ sin\theta} \,d\theta$$

which evaluates evaluates to

$$\frac{1}{4} ln|sin \theta| + C$$

I have $x = 4 tan\theta$, therefore $\frac{x}{4} = tan\theta$.

$tan\theta = \frac{opposite}{adjacent}$ and $sin\theta = \frac{opposite}{hypotenuse}$.

So, given $\frac{x}{4} = tan\theta$, then $opposite = x$ and $adjacent = 4$, and using the pythagorean theorem, $hypotenuse = \sqrt{x^2 + 16}$.

Plugging that into $sin\theta = \frac{opposite}{hypotenuse}$, $sin\theta = \frac{x}{\sqrt{x^2 + 16}}$, therefore

$$\frac{1}{4} ln|sin \theta| + C$$

is the same as

$$\frac{1}{4} ln|\frac{x}{\sqrt{x^2 + 16}}| + C$$

Is this right?
 
Physics news on Phys.org
  • #2
I'm with you up to this point:

\(\displaystyle I=\frac{1}{4}\int \frac{1}{\sin(\theta)}\,d\theta\)

However, you next state:

\(\displaystyle I=\frac{1}{4}\ln\left|\sin(\theta)\right|+C\)

If this is correct, and if we differentiate $I$ w.r.t $\theta$, we should get:

\(\displaystyle \frac{1}{4\sin(\theta)}\)

Do we?
 
  • #3
tmt said:
$$\int_{}^{} \frac{1}{x\sqrt{x^2 + 16}} \,dx$$

I can set $x = 4 tan\theta$. Thus $dx = 4 sec^2 \theta d\theta$

So, plug this into the first equation:

$$\int_{}^{} \frac{4 sec^2 \theta }{4 tan\theta \sqrt{16 tan^2\theta + 16}} \,d\theta$$

Then,

$$\int_{}^{} \frac{ sec^2 \theta }{4 tan\theta sec\theta} \,d\theta$$

then:

$$\frac{1}{4}\int_{}^{} \frac{ sec \theta }{ tan\theta} \,d\theta$$

I can simplify this to:

$$\frac{1}{4}\int_{}^{} \frac{ 1}{ sin\theta} \,d\theta$$

which evaluates evaluates to

$$\frac{1}{4} ln|sin \theta| + C$$

I have $x = 4 tan\theta$, therefore $\frac{x}{4} = tan\theta$.

$tan\theta = \frac{opposite}{adjacent}$ and $sin\theta = \frac{opposite}{hypotenuse}$.

So, given $\frac{x}{4} = tan\theta$, then $opposite = x$ and $adjacent = 4$, and using the pythagorean theorem, $hypotenuse = \sqrt{x^2 + 16}$.

Plugging that into $sin\theta = \frac{opposite}{hypotenuse}$, $sin\theta = \frac{x}{\sqrt{x^2 + 16}}$, therefore

$$\frac{1}{4} ln|sin \theta| + C$$

is the same as

$$\frac{1}{4} ln|\frac{x}{\sqrt{x^2 + 16}}| + C$$

Is this right?

$\displaystyle \begin{align*} \int{ \frac{1}{x\,\sqrt{x^2 + 16}} \,\mathrm{d}x } &= \int{ \frac{2\,x}{2\,x^2\,\sqrt{ x^2 + 16 }} \,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} u = x^2 + 16 \implies \mathrm{d}u = 2\,x\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{2\,x}{2\,x^2\,\sqrt{x^2 + 16}} \,\mathrm{d}x } &= \int{ \frac{1}{2\,\left( u - 16 \right) \, \sqrt{ u }} \,\mathrm{d}u } \\ &= \int{ \frac{1}{2\,\left[ \left( \sqrt{u} \right) ^2 - 16 \right] \, \sqrt{u}} \,\mathrm{d}u } \end{align*}$

Let $\displaystyle \begin{align*} v = \sqrt{u} \implies \mathrm{d}v = \frac{1}{2\,\sqrt{u}}\,\mathrm{d}u \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{1}{2\,\left[ \left( \sqrt{u} \right) ^2 - 16 \right] \,\sqrt{u} } \,\mathrm{d}u } &= \int{ \frac{1}{v^2 - 16}\,\mathrm{d}v } \\ &= \int{ \frac{1}{\left( v - 4 \right) \left( v + 4 \right) } \,\mathrm{d}v } \end{align*}$

Applying Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{v - 4} + \frac{B}{v + 4} &\equiv \frac{1}{ \left( v - 4 \right) \left( v + 4 \right) } \\ A\,\left( v + 4 \right) + B \,\left( v - 4 \right) &\equiv 1 \end{align*}$

Let $\displaystyle \begin{align*} v = 4 \end{align*}$ to find $\displaystyle \begin{align*} 8\,A = 1 \implies A = \frac{1}{8} \end{align*}$.

Let $\displaystyle \begin{align*} v = -4 \end{align*}$ to find $\displaystyle \begin{align*} -8\,B = 1 \implies B = -\frac{1}{8} \end{align*}$. Then

$\displaystyle \begin{align*} \int{ \frac{1}{\left( v - 4 \right) \left( v + 4 \right) } \,\mathrm{d}v } &= \frac{1}{8} \int{ \left( \frac{1}{v - 4} - \frac{1}{v + 4} \right) \,\mathrm{d}v } \\ &= \frac{1}{8} \, \left( \ln{ \left| v - 4 \right| } - \ln{ \left| v + 4 \right| } \right) + C \\ &= \frac{1}{8} \ln{ \left| \frac{v - 4}{v + 4} \right| } + C \\ &= \frac{1}{8} \ln{ \left| \frac{\sqrt{u} - 4}{\sqrt{u} + 4} \right| } + C \\ &= \frac{1}{8} \ln{ \left| \frac{\sqrt{x^2 + 16} - 4}{\sqrt{x^2 + 16} + 4} \right| } + C \end{align*}$
 

FAQ: Is This Trig Substitution Correct for This Integral?

What is trig substitution?

Trig substitution is a method used in calculus to solve integrals containing expressions involving trigonometric functions. It involves substituting a trigonometric function for a variable in the integral to make it easier to solve.

When should I use trig substitution?

Trig substitution is typically used when the integral contains expressions involving radicals or when the integrand can be rewritten in terms of trigonometric functions. It can also be used to solve integrals involving inverse trigonometric functions.

How do I choose the trigonometric substitution?

The choice of trigonometric substitution depends on the form of the integral and the trigonometric identities that can be used to simplify it. Common substitutions include using the Pythagorean identities, double angle identities, and half angle identities.

Are there any common mistakes to avoid when using trig substitution?

One common mistake is forgetting to include the appropriate differential, such as dx, when substituting. Another mistake is using the wrong trigonometric identity or not simplifying the integral enough after substitution.

Can trig substitution be used for definite integrals?

Yes, trig substitution can be used for definite integrals. However, the limits of integration may need to be adjusted to match the new variable used in the substitution.

Similar threads

Replies
4
Views
1K
Replies
8
Views
658
Replies
3
Views
2K
Replies
29
Views
2K
Replies
8
Views
1K
Replies
5
Views
2K
Replies
1
Views
1K
Back
Top