- #1
tmt1
- 234
- 0
$$\int_{}^{} \frac{1}{x\sqrt{x^2 + 16}} \,dx$$
I can set $x = 4 tan\theta$. Thus $dx = 4 sec^2 \theta d\theta$
So, plug this into the first equation:
$$\int_{}^{} \frac{4 sec^2 \theta }{4 tan\theta \sqrt{16 tan^2\theta + 16}} \,d\theta$$
Then,
$$\int_{}^{} \frac{ sec^2 \theta }{4 tan\theta sec\theta} \,d\theta$$
then:
$$\frac{1}{4}\int_{}^{} \frac{ sec \theta }{ tan\theta} \,d\theta$$
I can simplify this to:
$$\frac{1}{4}\int_{}^{} \frac{ 1}{ sin\theta} \,d\theta$$
which evaluates evaluates to
$$\frac{1}{4} ln|sin \theta| + C$$
I have $x = 4 tan\theta$, therefore $\frac{x}{4} = tan\theta$.
$tan\theta = \frac{opposite}{adjacent}$ and $sin\theta = \frac{opposite}{hypotenuse}$.
So, given $\frac{x}{4} = tan\theta$, then $opposite = x$ and $adjacent = 4$, and using the pythagorean theorem, $hypotenuse = \sqrt{x^2 + 16}$.
Plugging that into $sin\theta = \frac{opposite}{hypotenuse}$, $sin\theta = \frac{x}{\sqrt{x^2 + 16}}$, therefore
$$\frac{1}{4} ln|sin \theta| + C$$
is the same as
$$\frac{1}{4} ln|\frac{x}{\sqrt{x^2 + 16}}| + C$$
Is this right?
I can set $x = 4 tan\theta$. Thus $dx = 4 sec^2 \theta d\theta$
So, plug this into the first equation:
$$\int_{}^{} \frac{4 sec^2 \theta }{4 tan\theta \sqrt{16 tan^2\theta + 16}} \,d\theta$$
Then,
$$\int_{}^{} \frac{ sec^2 \theta }{4 tan\theta sec\theta} \,d\theta$$
then:
$$\frac{1}{4}\int_{}^{} \frac{ sec \theta }{ tan\theta} \,d\theta$$
I can simplify this to:
$$\frac{1}{4}\int_{}^{} \frac{ 1}{ sin\theta} \,d\theta$$
which evaluates evaluates to
$$\frac{1}{4} ln|sin \theta| + C$$
I have $x = 4 tan\theta$, therefore $\frac{x}{4} = tan\theta$.
$tan\theta = \frac{opposite}{adjacent}$ and $sin\theta = \frac{opposite}{hypotenuse}$.
So, given $\frac{x}{4} = tan\theta$, then $opposite = x$ and $adjacent = 4$, and using the pythagorean theorem, $hypotenuse = \sqrt{x^2 + 16}$.
Plugging that into $sin\theta = \frac{opposite}{hypotenuse}$, $sin\theta = \frac{x}{\sqrt{x^2 + 16}}$, therefore
$$\frac{1}{4} ln|sin \theta| + C$$
is the same as
$$\frac{1}{4} ln|\frac{x}{\sqrt{x^2 + 16}}| + C$$
Is this right?