I Is time continuous or discrete in quantum physics?

deepalakshmi
Messages
95
Reaction score
6
TL;DR Summary
Is time continuous or discrete in quantum physics
I was working on plotting fidelity with time for two quantum states. First I used discrete time( t= 0,1,2,3...etc) to plot my fidelity. I got constant fidelity as 1 with continuous value of time. Next I used discrete set of values ( t=0 °,30 °,60 °,90 °). Here I saw my fidelity decreases and after a particular time it became constant (0). My teacher said that I should use continuous set of values. Why continuous rather than discrete?
 
Last edited:
Physics news on Phys.org
The both you quote are discrete though I don' t know their units of time, including angle with which I am not familiar. I am afraid you take your teachers advice in a wrong manner.
 
  • Like
Likes deepalakshmi
In standard QT time is a continuous real parameter (NOT an observable).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...

Similar threads

Replies
21
Views
2K
Replies
85
Views
4K
Replies
8
Views
2K
Replies
11
Views
4K
Replies
2
Views
817
Replies
5
Views
975
Replies
6
Views
1K
Back
Top