Isothermal compressibility of bose-Einstein condensate

AI Thread Summary
The discussion focuses on the isothermal compressibility of Bose-Einstein condensates, detailing its mathematical derivation and implications. Participants work through various equations, including the relationship between pressure, volume, and chemical potential, while addressing specific homework problems related to compressibility. Key points include the derivation of compressibility expressions, the behavior of compressibility during isothermal compression, and the differences between Bose gases and ideal gases at low temperatures. The conversation also highlights challenges in calculating derivatives and integrating functions related to the density of states. Overall, the thread emphasizes the complexity of understanding Bose-Einstein condensation and its thermodynamic properties.
gbertoli
Messages
7
Reaction score
0

Homework Statement



Variables: N (number of particles), μ (chemical potential), P (pression), V (volume).
k is Boltzmann's constant. I often use β=1/kT.

The (isothermal) compressibility is given by

\kappa_{T} = -\frac{1}{V}\left (\frac{\partial V}{\partial P}\right )_{N,T}

The following is also true (this was the first part of the assignment but I've already done it):

\left ( \frac{\partial P}{\partial V} \right )_{\mu ,T} = \left ( \frac{\partial P}{\partial V} \right )_{N,T} + \left ( \frac{\partial P}{\partial N} \right )_{V,T}\left ( \frac{\partial N}{\partial V} \right )_{\mu,T}

The questions are:
a) Show that the left-hand side of this equation vanishes
b) Show that
\kappa_{T} = \frac{1}{V}\left ( \frac{\partial \mu}{\partial P} \right )_{V,T} \left ( \frac{\partial N}{\partial \mu} \right )_{V,T}\left ( \frac{\partial V}{\partial N} \right )_{\mu,T}
c) Show that
\left ( \frac{\partial \mu}{\partial P} \right )_{V,T} = \left ( \frac{\partial V}{\partial N} \right )_{\mu,T} = \frac{V}{N}
d) Show that
\kappa_{T} = \frac{V^{2}}{N^{2}} \frac{g_{0}}{2} \int_{0}^{\infty }\frac{\mathrm{d}\varepsilon}{\sqrt{\varepsilon}(e^{\beta\varepsilon-\beta\mu}-1)}
e) The Bose-Einstein condensation can be approached by isothermally compressing the
gas. Describe qualitatively the behavior of κ in that process. What do you consider
an essential difference with the behavior of the ideal gas at low temperatures?

f) Show that in the high temperature the ideal gas result of \kappa_{T} = \frac{1}{P} = \frac{V}{NkT} is recovered.



Homework Equations



To keep the V dependence explicit, the density of states can be written as

g(\varepsilon) = V g_{0} \sqrt{\varepsilon }

Here is g_{0} = 2\pi (2m)^{\frac{3}{2}}h^{-3}

An expression for N is:

N = \int_{0}^{\infty }\mathrm{d}\varepsilon g(\varepsilon) \frac{1}{e^{\beta \varepsilon - \beta \mu} -1} = V g_{0}\int_{0}^{\infty }\mathrm{d}\varepsilon \sqrt{\varepsilon }\frac{1}{e^{\beta \varepsilon - \beta \mu}-1}

The pressure can be found from \beta PV = \ln Z, with Z the gibbs sum, leading to the equation

P = kTg_{0}\int_{0}^{\infty }\mathrm{d}\varepsilon \sqrt{\varepsilon }\log(1-e^{\beta \mu - \beta \varepsilon})


The Attempt at a Solution



My guesses are:
a) The expression for P does not explicitely depend on V and μ and T are held constant. This gives that \left ( \frac{\partial P}{\partial V} \right )_{\mu ,T} is equal to 0.

b) If what I said by a) is true, I can just use the equality
\left ( \frac{\partial P}{\partial V} \right )_{N,T} = - \left ( \frac{\partial P}{\partial N} \right )_{V,T}\left ( \frac{\partial N}{\partial V} \right )_{\mu,T}
and "turn it upside down" (sorry for poor english) to get
\left ( \frac{\partial V}{\partial P} \right )_{N,T} = - \left ( \frac{\partial N}{\partial P} \right )_{V,T}\left ( \frac{\partial V}{\partial N} \right )_{\mu,T}
Then I think I can use (chain rule)
\left ( \frac{\partial N}{\partial P} \right )_{V,T} = \left ( \frac{\partial N}{\partial \mu} \right )_{V,T}\left ( \frac{\partial \mu}{\partial P} \right )_{V,T}
Combining all this should give the right answer:
\kappa_{T} = -\frac{1}{V}\left (\frac{\partial V}{\partial P}\right )_{N,T} = -\frac{1}{V} \times - \left ( \frac{\partial N}{\partial P} \right )_{V,T}\left ( \frac{\partial V}{\partial N} \right )_{\mu,T} =\frac{1}{V} \left ( \frac{\partial N}{\partial \mu} \right )_{V,T}\left ( \frac{\partial \mu}{\partial P} \right )_{V,T}\left ( \frac{\partial V}{\partial N} \right )_{\mu,T}

c) I really don't know, maybe I could get an expression for μ but that seems unlikely.

d)Assuming I already have the results from c), the equation found in b) becomes
\kappa_{T} = \frac{1}{V} \frac{V^{2}}{N^{2}}\left ( \frac{\partial N}{\partial \mu} \right )_{V,T}
so I just need to take the derivative of N with respect to μ. I can use integration by parts but it gets quite messy because you integrate in ε but derive in μ. Anyway, this is what I have:
\frac{\partial }{\partial \mu}V g_{0}\int_{0}^{\infty }\mathrm{d}\varepsilon \sqrt{\varepsilon }\frac{1}{e^{\beta \varepsilon - \beta \mu}-1} = V g_{0}\int_{0}^{\infty }\mathrm{d}\varepsilon \sqrt{\varepsilon }\frac{\partial }{\partial \mu}\frac{1}{e^{\beta \varepsilon - \beta \mu}-1} = \left [ V g_{0} \sqrt{\varepsilon}\frac{1}{e^{\beta \varepsilon - \beta \mu}-1} \right ]_{0}^{\infty} - V g_{0} \int_{0}^{\infty }\mathrm{d}\varepsilon \frac{1}{2\sqrt{\varepsilon }}\frac{1}{e^{\beta \varepsilon - \beta \mu}-1}
I put the derivative inside the integral and derive only the Bose-Einstein distribution because the square root is not μ-dependent. The get the correct answer, the evaluated term should go to zero but i still get a minus sign. Help?

e) I don't really know. Probably κ would diverge but I can only say that from the fact that if T goes to 0 then β goes to infinity. I can't quite grasp the physical insight of the question.

f) No very good ideas. For a small β the exponential goes to 1 but that doesn't really help.
This is my first post so go easy on me.
 
Last edited:
Physics news on Phys.org
ok, i know where the minus sign comes in question (d). The thing is that taking the derivative in mu gives the same result as taking the derivative in epsilon except for a minus sign that comes from the exponent. so you can just substitute (d/dmu) with (-d/deps) inside the integral.
 
It seems we are in class together, because I'm trying to finish this exact same test.
I see you still don't have a clue of what to do at c. I did not complete it yet, but I gave an expression for N and then took the derivative with respect to V. Afterwards I used the equation for P and derived it with respect to mu. (I end up with 2 functions which are the same apart from a - sign.

I don't know what you mean with the 2nd post about part d. I used: kt=1/V V^2/N^2 (dn/dmu) and (dn/dmu) gives some integral. Afterwards you can start with the expression given at problem d, if you partially integrate that there is not going to be any minus sign. In the solution you posted you forget to take the derivative to mu from that last fraction, this will give you an extra minus sign. [remember: int (uV) = UV - int (Vu)]

For part e, I think the big difference is that for an ideal gas, kt only depends on V where for a Bose gas, kt depends on V^2. Part f is still giving me some trouble. At first glace I think that the integral part of 'f' will vanish because beta will be 0 and the exp(be-bmu) will be 1. Then the problem is to find a way to equate the remaining to V/NkT.
 
Last edited:
TvB said:
Afterwards you can start with the expression given at problem d, if you partially integrate that there is not going to be any minus sign. In the solution you posted you forget to take the derivative to mu from that last fraction, this will give you an extra minus sign. [remember: int (uV) = UV - int (Vu)]

Watch out. when you derive in mu you don't get any minus sign. the exponent is negative but it is at the denominator, so its actually positive. and i think this is also why you get a minus sign in part c.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top