MHB Jack and Jane: Same Height, Different Growth

  • Thread starter Thread starter LeanaLerner
  • Start date Start date
  • Tags Tags
    Growth Height
AI Thread Summary
Jack's height increases by 15%, resulting in a new height of 5.75 ft. To find Jane's original height, represented as "h," the equation h(1.15) = 5.75 is used. Solving for h gives Jane's height as 5 ft. The discussion clarifies the calculation of percentage increase in height. Ultimately, Jane remains at her original height while Jack experiences growth.
LeanaLerner
Messages
1
Reaction score
0
Suppose Jack and Jane are the same height, and Jack's height increases by 15% to 5.75 ft. If Jane does not grow, what is her height?Thank you in advance for your help and time.
 
Mathematics news on Phys.org
let $h$ represent Jack and Jane’s original same height ...

$h(1.15)=5.75$

solve for $h$
 
Expanding on what Skeeter said: If Jack's original height is "X" and increases by "15% of Jack's height" then it increases by 0.15X. So Jack's new height is X+ 0.15X= (1.00+ 0.15)X= 1.15X.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top