- #1
Spathi
Gold Member
- 101
- 10
I need to implement a routine for finding the eigenvalues of a symmetrical matrix (for computing the vibrational frequencies from Hessian). I had already implemented a Jacobi diagonalization algorithm, and in most cases it works properly, but sometimes it crashes. In particular, it crashes when trying to diagonalize this matrix:
I implemented this algorithm quite long ago and partly forgot how it worked. At each iteration, it finds the biggest non-diagonal element of the matrix, computes some arctangent from the values by its position; then it creates a rotational matrix – firstly it is an identity matrix, but then it replaces 4 digits in it (2 at the diagonal) with sinuses and cosines of this arctangent. Then the source matrix is multiplied by this rotational matrix (more exactly, two “symmetrical” multiplications are made). The iterations are repeated until the non-diagonal elements are sufficiently small.
I can write more details about this algorithm, if this is necessary; it is interesting for me to understand the principle, how all these things work.
8.1285326168826E-6 2.38306206017885E-10 3.47264450495782E-9 -1.86224307187575E-6 2.07291390876557E-7 7.10382787255987E-7 -2.11716580785851E-6 -3.56347908891966E-7 1.55354671458546E-6 -2.48362013270562E-6 1.48849726541923E-7 -2.26671204429494E-6
1.64647438695376E-10 8.12125705093878E-6 -4.83879107332822E-9 2.07007814274288E-7 -2.43912835431489E-6 -2.20280352385421E-6 -3.5557217456388E-7 -2.18989978010799E-6 1.71867197602653E-6 1.48415293298861E-7 -1.82821569427162E-6 4.88002290386578E-7
3.08290296016882E-9 -5.67968728244711E-9 1.57935511836939E-5 4.36226239778081E-7 -1.35265046707309E-6 -4.18603775487232E-6 9.5489784625453E-7 1.05668195539855E-6 -4.18499559959507E-6 -1.39359095947773E-6 3.00508536567709E-7 -4.186569525721E-6
-1.86325688032289E-6 2.04241612048088E-7 4.34344712579062E-7 1.95418631395656E-6 -8.57916701225296E-7 -3.32864408651317E-7 3.65683624492258E-7 -4.96914771976087E-7 -4.2739549957064E-7 -8.38376844511562E-7 1.1924461623516E-6 4.14914896208524E-7
2.0477554872122E-7 -2.4392716938814E-6 -1.34967475345946E-6 -8.58307453234214E-7 4.34465280449163E-6 1.03477945772584E-6 -4.80608873011829E-7 -1.80435674114853E-6 -1.1666024229946E-7 1.17609783444138E-6 -6.00820618891346E-7 1.5501292986552E-7
7.04334309042532E-7 -2.18678919034304E-6 -4.18032436129733E-6 -3.32246982707501E-7 1.03281029104992E-6 1.76480075851612E-6 -3.42186860981594E-7 2.79257875134355E-7 7.79465812236145E-7 1.14414941996306E-7 4.26659960913203E-7 7.79549641714165E-7
-2.11341141715773E-6 -3.49304912451842E-7 9.51800904867838E-7 3.6559452924397E-7 -4.81095952517078E-7 -3.41987890148466E-7 3.00059039784564E-6 1.46255579597976E-6 -7.28812546407063E-7 -1.68580035591889E-6 -7.03732310446134E-7 3.1402312587757E-7
-3.49855212953954E-7 -2.18901866188688E-6 1.05737118658894E-6 -4.97364326761096E-7 -1.80496787787468E-6 2.80150182140227E-7 1.46280118580038E-6 3.29862132839406E-6 -8.08575833376958E-7 -6.87261145055025E-7 2.46834769007884E-7 -3.12305420377653E-7
1.54197784334517E-6 1.70969638443062E-6 -4.18002782799627E-6 -4.27193051892312E-7 -1.16247434667037E-7 7.79477011829923E-7 -7.27167651347098E-7 -8.06458161925154E-7 1.7645343077223E-6 -7.16748790017276E-8 -4.36694156402397E-7 7.79568534026464E-7
-2.47942150730988E-6 1.46386123432345E-7 -1.39233422203437E-6 -8.3858606749021E-7 1.17620571629039E-6 1.13903039990619E-7 -1.68624276791078E-6 -6.87052324017123E-7 -7.23378475087464E-8 4.49621413992641E-6 -6.05533637041756E-7 1.06549478105954E-6
1.46444171529516E-7 -1.82595118756624E-6 2.98559889917643E-7 1.19269426645613E-6 -6.00847959409068E-7 4.27271934582779E-7 -7.03647423852404E-7 2.47020006680735E-7 -4.36998861762308E-7 -6.05474561252034E-7 1.80565742960205E-6 -2.27667180665179E-7
-2.25170804837726E-6 4.8313892479228E-7 -4.18240539470707E-6 4.14392732184937E-7 1.55446860561168E-7 7.79638972611766E-7 3.13251631859053E-7 -3.12517837456977E-7 7.79482822703453E-7 1.06271288410322E-6 -2.27083836082802E-7 1.76634810824549E-6
(12 values in each line, i.e. each row in the matrix consists of 3 lines here)
1.64647438695376E-10 8.12125705093878E-6 -4.83879107332822E-9 2.07007814274288E-7 -2.43912835431489E-6 -2.20280352385421E-6 -3.5557217456388E-7 -2.18989978010799E-6 1.71867197602653E-6 1.48415293298861E-7 -1.82821569427162E-6 4.88002290386578E-7
3.08290296016882E-9 -5.67968728244711E-9 1.57935511836939E-5 4.36226239778081E-7 -1.35265046707309E-6 -4.18603775487232E-6 9.5489784625453E-7 1.05668195539855E-6 -4.18499559959507E-6 -1.39359095947773E-6 3.00508536567709E-7 -4.186569525721E-6
-1.86325688032289E-6 2.04241612048088E-7 4.34344712579062E-7 1.95418631395656E-6 -8.57916701225296E-7 -3.32864408651317E-7 3.65683624492258E-7 -4.96914771976087E-7 -4.2739549957064E-7 -8.38376844511562E-7 1.1924461623516E-6 4.14914896208524E-7
2.0477554872122E-7 -2.4392716938814E-6 -1.34967475345946E-6 -8.58307453234214E-7 4.34465280449163E-6 1.03477945772584E-6 -4.80608873011829E-7 -1.80435674114853E-6 -1.1666024229946E-7 1.17609783444138E-6 -6.00820618891346E-7 1.5501292986552E-7
7.04334309042532E-7 -2.18678919034304E-6 -4.18032436129733E-6 -3.32246982707501E-7 1.03281029104992E-6 1.76480075851612E-6 -3.42186860981594E-7 2.79257875134355E-7 7.79465812236145E-7 1.14414941996306E-7 4.26659960913203E-7 7.79549641714165E-7
-2.11341141715773E-6 -3.49304912451842E-7 9.51800904867838E-7 3.6559452924397E-7 -4.81095952517078E-7 -3.41987890148466E-7 3.00059039784564E-6 1.46255579597976E-6 -7.28812546407063E-7 -1.68580035591889E-6 -7.03732310446134E-7 3.1402312587757E-7
-3.49855212953954E-7 -2.18901866188688E-6 1.05737118658894E-6 -4.97364326761096E-7 -1.80496787787468E-6 2.80150182140227E-7 1.46280118580038E-6 3.29862132839406E-6 -8.08575833376958E-7 -6.87261145055025E-7 2.46834769007884E-7 -3.12305420377653E-7
1.54197784334517E-6 1.70969638443062E-6 -4.18002782799627E-6 -4.27193051892312E-7 -1.16247434667037E-7 7.79477011829923E-7 -7.27167651347098E-7 -8.06458161925154E-7 1.7645343077223E-6 -7.16748790017276E-8 -4.36694156402397E-7 7.79568534026464E-7
-2.47942150730988E-6 1.46386123432345E-7 -1.39233422203437E-6 -8.3858606749021E-7 1.17620571629039E-6 1.13903039990619E-7 -1.68624276791078E-6 -6.87052324017123E-7 -7.23378475087464E-8 4.49621413992641E-6 -6.05533637041756E-7 1.06549478105954E-6
1.46444171529516E-7 -1.82595118756624E-6 2.98559889917643E-7 1.19269426645613E-6 -6.00847959409068E-7 4.27271934582779E-7 -7.03647423852404E-7 2.47020006680735E-7 -4.36998861762308E-7 -6.05474561252034E-7 1.80565742960205E-6 -2.27667180665179E-7
-2.25170804837726E-6 4.8313892479228E-7 -4.18240539470707E-6 4.14392732184937E-7 1.55446860561168E-7 7.79638972611766E-7 3.13251631859053E-7 -3.12517837456977E-7 7.79482822703453E-7 1.06271288410322E-6 -2.27083836082802E-7 1.76634810824549E-6
(12 values in each line, i.e. each row in the matrix consists of 3 lines here)
I implemented this algorithm quite long ago and partly forgot how it worked. At each iteration, it finds the biggest non-diagonal element of the matrix, computes some arctangent from the values by its position; then it creates a rotational matrix – firstly it is an identity matrix, but then it replaces 4 digits in it (2 at the diagonal) with sinuses and cosines of this arctangent. Then the source matrix is multiplied by this rotational matrix (more exactly, two “symmetrical” multiplications are made). The iterations are repeated until the non-diagonal elements are sufficiently small.
I can write more details about this algorithm, if this is necessary; it is interesting for me to understand the principle, how all these things work.
Last edited: