- #7,281
ernal_student
- 34
- 0
clancy688 said:The meltdown occurred before venting and before the fuel rods got exposed?
It might help to recall the details with this excerpt from the accumulated information on the related wikipedia page:
On 11 March at 14:46 JST, unit 1 scrammed successfully in response to the earthquake though evacuated workers reported violent shaking and burst pipes within the reactor building. All generated electrical power was lost following the tsunami leaving only emergency batteries, able to run some of the monitoring and control systems. At 15:42, TEPCO declared a "Nuclear Emergency Situation" for units 1 and 2 because "reactor water coolant injection could not be confirmed for the emergency core cooling systems." [...]
After the loss of site power, unit 1 initially continued cooling using the isolation condenser system; by midnight water levels in the reactor were falling and TEPCO gave warnings of the possibility of radioactive releases. In the early hours of 12 March, TEPCO reported that radiation levels were rising in the turbine building for unit 1 and that it was considering venting some of the mounting pressure into the atmosphere, which could result in the release of some radioactivity. Chief Cabinet Secretary Yukio Edano stated later in the morning the amount of potential radiation would be small and that the prevailing winds were blowing out to sea. At 02:00 JST, the pressure inside the reactor containment was reported to be 600 kPa (6 bar or 87 psi), 200 kPa higher than under normal conditions. At 05:30 JST, the pressure inside reactor 1 was reported to be 2.1 times the "design capacity", 820 kPa.Isolation cooling ceased to operate between midnight and 11:00 JST 12 March, at which point TEPCO started relieving pressure and injecting water. One employee working inside unit 1 at this time received a radiation dose of 106 mSv and was later sent to a hospital to have his condition assessed.
Rising heat within the containment area led to increasing pressure. Electricity was needed for both the cooling water pumps and ventilation fans used to drive gases through heat exchangers within the containment. Releasing gases from the reactor is necessary if pressure becomes too high and has the benefit of cooling the reactor as water boils off but this also means cooling water is being lost and must be replaced. If there was no damage to the fuel elements, water inside the reactor should be only slightly radioactive.
In a press release at 07:00 JST 12 March, TEPCO stated, "Measurement of radioactive material (iodine, etc.) by monitoring car indicates increasing value compared to normal level. One of the monitoring posts is also indicating higher than normal level." Dose rates recorded on the main gate rose from 69 nGy/h (for gamma radiation, equivalent to 69 nSv/h) at 04:00 JST, 12 March, to 866 nGy/h 40 minutes later, before hitting a peak of 0.3855 mSv/h at 10:30 JST.
At 13:30 JST, workers detected radioactive caesium-137 and iodine-131 near reactor 1, which indicated some of the core's fuel had been damaged. Cooling water levels had fallen so much that parts of the nuclear fuel rods were exposed and partial melting might have occurred. Radiation levels at the site boundary exceeded the regulatory limits. [...]
At 15:36 JST on 12 March, there was an explosion in the reactor building at unit 1.
The press release came out at what is now considered the approximate time of the meltdown - during the period of increased gamma radiation.
Last edited: