MHB Johnathan's question at Yahoo Answers (Power series representation)

AI Thread Summary
The discussion focuses on finding the power series representation and radius of convergence for the function f(x) = 1/((2 + x)^2). The solution involves using the geometric series to derive the representation, starting with g(x) = 1/(x + 2) and differentiating it to find g'(x). The resulting power series for f(x) is presented as a summation involving alternating signs and coefficients based on n. The radius of convergence is established as |x| < 2, ensuring the series converges within this interval. This approach effectively addresses Johnathan's question regarding power series representation.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

am studying for a Cal 2 final and I am having a lot of trouble with this one example. Find the power series representation for the function and the radius of convergence. I understand the concepts of power series representations and radii of convergence but I am not sure how to go about solving this problem. f(x) = 1/((2 + x)^2)
I've thought about maybe a partial fraction, but that wouldn't work, then I've thought about making this into f(x) = 1/4 * 1/1-(x^2 + 4x) and setting the x^2 and 4x to my a[n] function but I am not sure if this is correct or how to do it.

Here is a link to the question:

Help with this power series representation? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Johnathan,

Using the geometric series: $$g(x)=\dfrac{1}{x+2}=\dfrac{1}{2}\dfrac{1}{1+ \frac{x}{2}}=\dfrac{1}{2}\displaystyle\sum_{n=0}^{\infty}\frac{(-1)^nx^n}{2^n}\;(|x|<2)$$
Using the uniform convergence of the power series on all $[-\rho,\rho]\subset (-2,2)$: $$g'(x)=-\frac{1}{(x+2)^2}=\sum_{n=1}^{\infty}\frac{(-1)^nnx^{n-1}}{2^{n+1}}\;(|x|<2)$$ As a consequence, $$f(x)=\dfrac{1}{(x+2)^2}=\displaystyle\sum_{n=1}^{\infty}\frac{(-1)^{n+1}nx^{n-1}}{2^{n+1}}\;(|x|<2)$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top