- #1
geor
- 35
- 0
Hello all,
I am trying to solve this exercise here:
Let \phi denote the Frobenius map x |-> x^p on the finite field F_{p^n}. Determine the Jordan canonical form (over a field containing all the eigenvalues) for \phi considered as an F_p-linear transformation of the n-dimensional F_p-vector space F_{p^n}.
So, this is how I start:
Suppose that F_{p^n}=F_p(a1,a2,a3, ..., an) (those n elements will be powers of one element, but it doesn't matter). Now, since the Frobenius map is an isomorphism of F_{p^n} to itself, then \phi permutes a1, a2, ..., an.
Since a1, a2, ..., a3 form a basis of the n-dimensional F_p-vector space F_{p^n}, then the matrix of \phi in respect with that basis will be just a permutation matrix.
So the problem becomes equivalent with: "find the jordan canonical form of a permutation matrix".
Am I doing some obvious mistake here? Would the latter be something straightforward? I admit I can't see it...
Any help would be greatly appreciated.
I am trying to solve this exercise here:
Let \phi denote the Frobenius map x |-> x^p on the finite field F_{p^n}. Determine the Jordan canonical form (over a field containing all the eigenvalues) for \phi considered as an F_p-linear transformation of the n-dimensional F_p-vector space F_{p^n}.
So, this is how I start:
Suppose that F_{p^n}=F_p(a1,a2,a3, ..., an) (those n elements will be powers of one element, but it doesn't matter). Now, since the Frobenius map is an isomorphism of F_{p^n} to itself, then \phi permutes a1, a2, ..., an.
Since a1, a2, ..., a3 form a basis of the n-dimensional F_p-vector space F_{p^n}, then the matrix of \phi in respect with that basis will be just a permutation matrix.
So the problem becomes equivalent with: "find the jordan canonical form of a permutation matrix".
Am I doing some obvious mistake here? Would the latter be something straightforward? I admit I can't see it...
Any help would be greatly appreciated.