- #71
- 24,488
- 15,038
Obviously there is no measurement problem, because theory and experiment agree to high accuracy, which means nothing less than that on the one hand the experimentalists can observe what's predicted by QT, i.e., the theory provides precise enough ideas for how to prepare and observe the phenomena it predicts and on the other hand theorists are able to use the theory to make such predictions and describe (hitherto all!) observations with the theory.A. Neumaier said:The deeper reason for this is that in a situation where the right concepts are lacking and one has to grope in the dark, one needs a strong philosophical bend to make progress. All scientific subjects were rooted in philosophy before they matured to a science, and quantum mechanics is no exception.
The philosophy-free position of @vanhees71 is possible only since the subject has matured such a lot since its inception. Except for the measurement problem, where most of the discussion is still on the level of the dark ages.
So what's "the measurement problem"?